Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки спиральная структура

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]


    СПИРАЛЬНЫЕ СТРУКТУРЫ В ПОЛИПЕПТИДАХ И БЕЛКАХ [c.604]

    Очень чувствительным методом исследования конформаций белков и полипептидов является спектрополяриметрия. В неупорядоченной конформации характер оптического вращения белков определяется прежде всего аминокислотным составом, причем кривые дисперсии оптического вращения имеют плавный характер. Когда белок принимает конформацию а-спирали, то появляется большой дополнительный вклад этой спиральной структуры, дисперсия оптического вращения может стать аномальной, появляется эффект Коттона [c.637]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]

    Схема комбинированного метода, на первый взгляд, выглядит достаточно логично. В действительности же она не может быть реализована в отношении всех своих положений, что следовало из уже имевшихся к моменту появления метода экспериментальных данных. Первый пункт схемы невыполним, по крайней мере, по трем причинам. Во-первых, у большей части белков вторичные структуры составляют незначительную долю трехмерной структуры в среднем, в а-спирали глобулярных белков входит 25-30% остатков, а в -структуры - 15-20%. Во-вторых, встречающиеся в конформациях белков вторичные структуры, как правило, сильно искажены и лишь условно и при большом желании могут быть отнесены к регулярным. Насколько геометрические параметры реальных конформационных состояний остатков полипептидной цепи могут отличаться от параметров вторичных структур видно из табл. IV. 16, в которой приведены значения двугранных углов остатков некоторых сегментов последовательностей а-химотрипсина и лизоцима. Во всех работах, посвященных поиску эмпирических корреляций, эти сегменты отнесены к а-спиральным или -структурным. И наконец, в-третьих, надежность существующих алгоритмов предсказания, несмотря на оптимистические сообщения (см. ниже), не >50%, что исключает их практическое использование. [c.508]

    Одна молекула белка содержит много водородных связей, которые являются одной из разновидностей внутримолекулярных сил притяжения, ориентирующих белковые цепи в трехмерном пространстве определенным образом, создавая вторичную структуру белка. На рис. 4.19 изображена а-спиральная структура, предложенная Полингом с сотрудниками на основе выполненного ими рентгеноструктурного исследования белков. а-Спираль — это спираль, которая, удаляясь от вас, закручивается по часовой стрелке. [c.100]


    Замечательным явилось сходство рентгенограмм (перечисленных фибриллярных белков и той структурной формы синтетических полипептидов, которая оказалась нечувствительной к их химической структуре. Речь идет об а-спирали. Получены убедительные признаки существования а-спиральной конфигурации в полипептидных цепях фибриллярных белков. Из меренный по рентгенограммам шаг спирали (около 5 А) и величина проекции одного остатка на ось волокна (около 1,5 А) согласуются с расчетными данными для а-спиральных структур. Дихроизм поляризованных инфракрасных спектров поглощения перечисленных фибриллярных белков указывает на то, что. водородные связи в этих белках [c.542]

    Водородная связь отличается исключительным сочетанием свойств — прежде всего сравнительно небольшой прочностью, меньшей, чем для типичных химических связей, но несколько большей, чем для ван-дер-ваальсовских связей, и направленностью. В ходе эволюции материи в земных условиях это сделало водородную связь основой механизма структурирования на надмолекулярном уровне и воспроизведения по соответствующим шаблонам сложнейших молекул, который безотказно и достаточно быстро дей- ствует в организмах при свойственных им невысоких температурах. Широко известные спиральные структуры белков, РНК и ДНК приобретают свою сложную, несимметричную конфигурацию благодаря водородным связям и легко перестраиваются в процессе жизнедеятельности организмов только потому, что система водородных связей, так же как застежка, называемая молнией, прочна, но легко разъединяется связь за связью, не требуя больших затрат энергии. И так же легко смыкается вновь. Подчеркнем, что в основе механизма редупликации молекул в организмах лежит строгая направленность водородных связей. [c.90]

    Денатурирующими агентами могут быть различные химические факторы кислоты и щелочи, изменяющие реакцию среды белковых растворов, выходящую за пределы значения pH от 3 до 10, т. е. лежащего вне зоны устойчивости белковых молекул разные легко гидратирующиеся соли, которые могут не только высаливать белки, по и денатурировать их в этом отношении остается справедливым лиотропный ряд для анионов Гофмейстера, в котором роданид и близлежащие к нему анионы вызывают денатурацию, в противоположность сульфатному концу ряда органические растворители, например ацетон, этиловый и метиловый спирты и др., снимающие водную оболочку у белков соответствующие окислители, производящие разрыв дисульфидных мостиков в белковой молекуле гуанидин и карбамид (мочевина), изменяющие количество водородных связей и, следовательно, конфигурацию белка (как бы производят плавление его комплексной спиральной структуры) и др. [c.209]

    В живых организмах белки существуют не просто в виде длинных, гибких цепей более или менее хаотической формы. Белковые цепи закручиваются или распрямляются определенным образом, принимая специфические формы, необходимые для функционирования того или иного белка. Эта особенность структуры белков называется их вторичной структурой. Одной из важнейших и наиболее распространенных вторичных структур является ос-спираль, впервые установленная Лайнусом Полингом и Р. Б. Кори. Схематическое изображение спиральной структуры белка дано на [c.448]

    Рис. 25.5. а-Спиральная структура белка. Символ К обозначает любую боковую цепь из числа указанных на рис. 25,3. [c.449]

    Какую роль играет водородная связь в образовании ос-спиральной структуры белка  [c.467]

    NH—СО— HR—, спираль образует правый винт. Широкое распространение а-спиральных структур среди синтетических полипептидов дает основание полагать, что такие спирали являются наиболее характерными и устойчивыми конфигурациями полипептидных цепей. Впоследствии это подтвердилось многочисленными физико-химическими исследованиями, в которых изучалась стабильность а-спиральной конфигурации полипептидов в самых различных условиях. Было обнаружено, что а-спираль стабильна в сравнительно широком диапазоне условий (pH, температура), а также в условиях, при которых многие белки остаются нативными. [c.540]

    Многие биологические макромолекулы типа белков или нуклеиновых кислот состоят из такого огромного количества атомов, что сборка их модели из отдельных шариков и трудоемка, и дорога. В таких случаях прибегают к макетам из картона (металла или пластмассы). Например, для изображения планарной пептидной единицы можно сделать макет (рис. П-1), исходя из размеров, приведенных на рис. 2-3 (т. 1, стр. 88). Довольно сложно рассчитать угол, под которым следует делать сгибы для воспроизведения углов Фиф (см. рис. 2-4 и табл. 2-3). (Гораздо легче решить эту задачу непосредственно путем геометрического конструирования, используя кусочки картона.) Таким способом можно создать очень красивые спиральные структуры (некоторые примеры приводит Карлсон [1]). При необходимости к а-углерод-ным атомам можно приклеить пенопластовые боковые цепи. При этом можно расположить спиральную модель на поверхности картонного цилиндра и украсить пенопластовыми боковыми цепочками. [c.376]

    Сопряжена ли интеркаляция плоских молекул в цепи нуклеиновых кислот с какой-либо биохимической функцией По-видимому, да. Например, в белках, взаимодействующих с нуклеиновыми кислотами, ароматические кольца боковых цепей аминокислот могут встраиваться между плоскостями оснований в спиральной структуре ДНК наподобие закладок внутри книги [85, 86]. Изменения в плотности супервитков, вызванные интеркаляцией или изменением ионного окружения, могут играть роль в соблюдении нужной последовательности во взаимодействии ДНК с внутриклеточными ферментными системами. [c.142]


    У нейротоксина а, как и у остальных четырех гомологичных белков, вместо остатка Ser находится Pro . Такая замена делает невозможной реализацию R-состояния у предшествующего остатка ys , что приводит к дискриминации а-спиральных структур и 9 из 10 -структур, представленных в табл. IV. 1. В эту группу не входит циклическая конформация Leu - ys , в которой ys находится в В-состоянии. В линейном варианте гомологичных белков (с Рго ) она становится глобальной. В циклической конформации фрагмента нейротоксина II Leu - ys остаток Ser имеет угол ф = -67,2°, т.е. близкий к фиксированному углу ф = -57,6° для пролина, а угол у = 151,3° у Ser находится в области, дозволенной для пролина. Расчет линейного и циклического фрагментов Leu - ys нейротоксина показал, что включение Pro вместо Ser не вызывает стерических затруднений, не изменяет конфигурацию дисульфидного мостика и лишь незначительно сказывается на значении угла v/( ys ), который изменяется с 134,5 до 124,9°. Абсолютная конформационная энергия и величины стабилизирующих межостаточных взаимодействий в структурах нейротоксинов П и а практически совпадают. [c.424]

    Спиральные структуры белка нарушаются следующими факторами  [c.25]

    Что касается растворимых глобулярных белков (например, гемоглобина, инсулина, гамма-глобулина, яичного альбумина), то вопрос о характере вторичной структуры еще сложнее. Накапливаются данные, согласно которым и в этом случае а-спираль играет ключевую роль. Подобные длинные пептидные цепи не одинаковы по структуре по всей длине отдельные их участки свернуты в спирали и являются относительно жесткими другие участки образуют петли, скручены случайным образом и довольно подвижны. Установлено, что при денатурации белка спиральные участки раскручиваются и цепь в целом приобретает неупорядоченное строение. (Однако опыт показывает, что в определенных условиях раскручивание и возникновение спирали могут быть обратимыми процессами белок возвращается к исходной вторичной структуре, поскольку это расположение является наиболее стабильным для цепи с данной последовательностью аминокислот.) [c.1061]

    Благодаря исследованиям Л. Полинга наиболее вероятным типом строения глобулярных белков принято считать а-спираль (рис. 1.17). Закручивание полипептидной цепи происходит по часовой стрелке (правый ход спирали), что обусловлено Ь-аминокислотным составом природных белков. Движущей силой в возникновении а-спиралей (так же как и 3-структур) является способность аминокислот к образованию водородных связей. В структуре а-спиралей открыт ряд закономерностей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, а на один аминокислотный остаток приходится 0,15 нм. Угол подъема спирали 26°, через 5 витков спирали (18 аминокислотных остатков) структурная конфигурация полипептидной цепи повторяется. Это означает, что период повторяемости (или идентичности) а-спиральной структуры составляет 2,7 нм. [c.60]

    Такая же складчатая структура существует в синтетических полипептидах, таких как полиамид-6 (см. раздел 3.9), она встречается только у фибриллярных белков. Спиральная вторичная структура, напротив, обнаружена как у фибриллярных, так и у глобулярных белков. [c.657]

    Для фибриллярных белков характерна спиральная структура с периодом идентич- ности примерно 7а (фиброин). Белки со кскладчатой структурой (кератин) состоят, по-видимому, из вытянутых цепей, связанных друг с другом межмолекулярными водородными связями. Глобулярные белки часто содержат участки, в которых остатки аминокислот частично входят в спиральную конформацию и частично — в неспирализованные сегменты. Измерение содержания спиральных участков на основании изменения вращательной способности при денатурации было применено впервые для полиаминокислот (см. 31,35) и позднее перенесено на белки. Второй метод основан на скорости изотопного обмена вторичного амидного водорода на дейтерий. Обмен в спирализованной ча-сти. молекулы идет медленнее, чем в беспорядочно свернутых сегментах (Блу, 1953—1961 Линдерштрем-Ланг, 1955). [c.710]

    B. ., образуемые в-вом в жидкой фазе, при кристаллизации обычно сохраняются (связи не разрываются). Кристаллич. структуры имеют вид цепей (напр., HF, метанол, Р-модификация щавелевой к-ты, РЬНРО ), плоских двухмерных слоев (напр., формамид, борная к-та, а-модифика-ция щавелевой к-ты), пространств, трехмерных сеток (лед, КН2РО4, L-глутаминовая к-та, ацетамид), спиральные структуры (белки, нуклеиновые к-ты). Взаимная ориентация фрагментов RAH и BR в кристалле отличается от их расположения в газовой фазе или р-ре, поскольку она должна обеспечивать миним. своб. энергию всей системы, а не только комплекса. Часто оптимальная с точки зрения прочности B. . ориентация фрагментов реализуется в структуре с низким коэф. упаковки пример-лед, к-рый кристаллизуется в тетраэдрич. решетку с коэф. упаковки 0,4. [c.404]

    Дан<е при замещении атомов водорода (вандерваальсов радиус 0,12 нм) атомами фтора (радиус 0,135 нм) цепь полимера не мон<ет остаться полностью вытянутой. Торсионный угол, равный в полиэтилене 180°, в полифторэтилене принимает значение 166° — этого изменения достаточно для снятия напрян<ения в контактах между атомами фтора, и при этом атомы фтора и соседние атомы углерода еще не мешают друг другу. Сформировавшаяся в результате спиральная структура напоминает структурные элементы, встречающиеся в белках и других биополимерах. Итак, образование спиральной конформации — это естественное следствие взаимного стерического вытеснения одних групп атомов другими [12, 13]. [c.87]

    Встречаются и другие спиральные структуры, диаметр которых может быть как больше, так и меньше, чем диаметр а-снирали они такн<е играют определенную роль в формировании структуры белков [13]. В спирали Зю на один виток приходится ровно три остатка каждый карбонил связан водородной связью с третьей по ходу цепи N—Н-группой. Таким образом, эта спираль закручена сильнее, чем а-спираль. я-спираль содерн<ит 4,4 остатка на виток и по диаметру превосходит а-спираль. Хотя Зю- и л-спирали не относятся к основным структурным элементам белков, они тем не менее встречаются в них, чаще всего образуя по одному витку на концах спиралей. [c.94]

    На рис. 4-7 приведены красивые спиральные структуры четырех разных типов, образованные из отдельных молекулярных фрагментов. Это пиль Е. oli, нить актина (F-актин) из мышечного волокна, жгутик бактерии ( . соИ) и вирион вируса табачной мозаики. Считается, что каждая из этих структур состоит из большого числа протомеров одного типа. Наиболее детально изучена структура вирусной частицы. Известна, в частности, последовательность 158 аминокислотных остатков, образующих каждую из субъединиц вирусного белка (мол. вес=17 500) число субъединиц на частицу равно примерно 2200, из них сформирова- [c.273]

    Одной из нерешенных проблем биологии является механизм Т1ревраш,ения химической энергии в механическую работу. Самыми маленькими движуш,имися органами являются жгутики бактерий, и можно думать, что исследования данного объекта помогут хотя бы отчасти проникнуть в эту тайну. Жгутики прокариот построены из белка одного типа — флагеллина. Молекулы флагеллина совсем не содержат остатков цистеина и триптофана, а остатки фенилаланина,, пролина и гистидина присутствуют в них лишь в небольших количествах. Этот белок характеризуется высоким содержанием гидрофобных аминокислот и имеет один остаток необычной аминокислоты — е- -метиллизина. Субъединицы жгутиков образуют спиральную структуру (рис. 4-7), формируя в ней также 11 почти параллельных оси опирали рядов— надспиралей с шагом 2,3 мкм Д. Эта последняя особенность жгутиков очень важна для понимания механизма их-функционирования. Мутантные бактерии, жгутики которых имеют линейную структуру, неподвижны. [c.281]

    Возможно существование нескольких различных спиральных структур, возникающих при образовании водородных связей между структурными элементами пептидной связи (NH- и СО-группы), из которых наиболее известна а-спнраль (рис. 3-14) с параметрами п = 3,6, i = 0,15 нм и h = Oi54 нм. В случае а-спирали за счет внутримолекулярных водородных связей образуется 13-членная кольцевая структура. Правильно назвать такую структуру можно так а(3,6)з)-спираль. Другими упорядоченными конформациями спирального типа для остова молекулы белка являются Зю-спираль, 7г(4,4) -спираль и 7(5,117)-спираль. [c.378]

    Известна первичная структура ряда иммуноглобулинов IgG- и IgM-типов, а также белка Бейса — Джонса (иммуноглобулина L-типа), появляющегося в моче при определенных заболеваниях (например, при миеломе). Этот белок, находящийся в растворе в виде димера, содержит 214 аминокислот. В нем отсутствуют метионин и спиральная структура. Некоторое представление о третичной структуре антитела удалось дать Эдмунсону и Хилшману [254] они сделали рентгеноструктурный аиа- [c.426]

    Общим свойством для белкоз пи фрагментов белков, проникающих в липидные бимолекулярные слои, является повышенное содержание в них а-спиральных структур. У мембранных белков, таких, как гликофорин или бактериородопсин, в липидном бимолекулярном слое удалось выявить один или несколько фрагментов, образующих а-спираль и состоящих из неполярных аминокислот [9]. [c.313]

    Во многих исследованиях такого плана к анализу упрощенных моделей привлекаются разные эмпирические соотношения, кристаллофафические данные, результаты статистического анализа и гомологи. В первом комплексном подходе к описанию свертывания белка С. Танаки и Г Шераги [33-36] рассмотрение модели полипептидной цепи сочетается с данными статистического анализа белков известной структуры. Авторы предполагают, что процесс образования конформации проходит через три последовательных этапа. На первом этапе (А) полностью развернутая белковая цепь складывается за счет внутриостаточных и ближних межостаточных взаимодействий в упорядоченные вторичные струкутры. Затем (этап В) под влиянием средних взаимодействий между а-спиральными и -струк-турными сегментами зарождаются небольшие контактные области При этом образованные на первом этапе регулярные формы могут претерпевать изменения. На третьем этапе (С) происходит ассоциация контактных областей этапа. В за счет дальних взаимодействий и образование нативной конформации белка. [c.486]

    Среди структурных белков особое место занимают кератины, поскольку они были первыми белками, изученными Астбюри метолом диффракции рентгеновских лучей. Их нерастворимость и биохимическая инертность не способствовали, однако, достаточному уровню активности исследований. Кератины образуют защищающие от внешней среды барьеры типа рогов, копыт, когтей, волос, шерсти и перьев. В перьях содержатся р-структуры, в то время как для волос и шерсти характерны а-спиральные структуры. Последние состоят из белков с низким содержанием серы эти микрофибриллы окружены матрицей двух других типов, одной с высоким содержанием глицина и тирозина, а другой—с высоким йроцентом серы. Во время синтеза прокератина в эпителиальных клетках в богатых серой белках имеются большие количества тиольных групп, образующих впоследствии дисульфидные связи, делающие кератин более жестким. Потерю волосами механической прочности при их обработке отбеливающими или восстанавливающими агентами (завивка-перманент) можно частично объяснить за счет расщепления дисульфидных связей. Восстановление и карбо-ксиметилирование дисульфидных связей (см. разд. 23.3.3) сделали возможным солюбилизацию и фракционирование некоторых компонентов кератина для последующего секвенирования [29]. В одном [c.572]

    Многие высокомолекулярные белки имеют спиральную структуру молекул (вторичная структура белка). Две спирали за счет образования многочисленных межмолекулярных водородных связей образуют двойную спираль. На один виток спирали приходится около четырех аминокислотных остатков (-КН-К-СО-) с различными по строению углеводородными радикалами К. Расстояние между витками спирали около 0,54 нм. Внутримолекулярная во дородная связь стабилизирует структуру каждой спирали. Структуру двойной спирали многих белков стабилизируют, кроме водородных связей, также дисульфидные связи 8-8, возникающие между соседними макромолекулами. Спирали белка могуг свтаться в клубок или образовывать нитевидные структуры — фибриллы. [c.43]

    РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина—около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков (рис. 1.26). Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков. [c.70]

    Измерения вязкости дают осевое соотношение 10 1, это свидетельствует о сильно вытян той форме белка. Интересно, что его антигенные свойства сохраняются при нагрсваннн до 95°С в течение 1 ч. Результаты измерения дисперсии оптического вращения (ДОВ) не выявляют спиральной структуры белка. [c.102]

    С помощью этого метода была установлена а-спиральная структура двух глобулярных белков -- мйоглобина и гемоглобина (Дж. Кендрью, М. Перутц), витамина Ви и инсулина (Д. Ходжкин), двойная спираль ДНК (Ф. Крик, Дж. Уотсон, М. Уилкинс), структура фермента лизоцима и т. д. [c.512]

    Однако при определенных условиях полипептиды могут образовывать определенные пространственные (трехмерные) структуры. Эти структуры образуются вследствие внутримолекулярного взаимодействия друг с другом и с растворителем различных групп мономерных звеньев полимерной молекулы. Например, в 1951 г. Лайнус Полинг и Роберт Кори теоретически предсказали, что полипептиды могут образовывать спиральную структуру вследствие наличия водородных связей между карбонильным атомом кислорода г-го фрагмента и амидным атомом водорода (г + 4) го фрагмента, что в дальнейшем нашло подтверждение на большом экспериментальном материале. Каждый белок с определенной нерегулярной последовательностью аминокислот может образовать уникальную пространственную структуру. Следует отметить, что любая тонкая биологическая функция, выполняемая белком, реализуется только при наличии такой структуры. Любое ее нарушение нагреванием или изменением pH среды (денатурация), не сопровождающееся расщеплением ковалентных связей, приводит к полной потере функциональной активности белка. Лишь небольшие белки могут легко претерпеть обратное превращение в исходное состояние. Обратное превращение денатурированного высокомолекулярного белка в исходную биологически активную структуру (ренатураци.ч) возможно, только если использовать специальную процедуру, т.е. в том случае, если ни мономерные компоненты, ни полимерные цепи не были повреждены в процессе денатурации. [c.15]


Смотреть страницы где упоминается термин Белки спиральная структура: [c.270]    [c.11]    [c.449]    [c.463]    [c.614]    [c.421]    [c.420]    [c.412]    [c.100]    [c.274]    [c.79]    [c.102]    [c.100]   
Биохимия Том 3 (1980) -- [ c.87 , c.95 ]

Биохимия растений (1966) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Спиральные структуры

Структура белка



© 2025 chem21.info Реклама на сайте