Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород в металлургии

    Процесс производства стали невозможен без кислорода, металлургия использует свыше 60% всего промышленного кислорода. [c.179]

    Нестационарным элементом процесса совсем другого типа является регенератор. В металлургии регенераторы применяются уже давно, в химической же промышленности они используются только около 40 лет (регенераторы Френкеля). Для регенераторов характерен периодический способ действия, причем цикл их работы состоит из последовательных нестационарных периодов. Так, например, в случае применения регенераторов для получения кислорода (рис. 14-3) в первом периоде работы через регенератор (колонна со специальной металлической насадкой) пропускается холодный воздух, поступающий из разделительной колонны. Температура насадки приблизительно через 3 мин становится равной температуре газа. Во втором периоде через насадку регенератора в противоположном направлении проходит сжатый атмосферный воздух. При этом воздух охлаждается, а насадка нагревается, затем цикл повторяется. Это простое по виду устройство требует, однако, решения целого ряда технических проблем. Его внедрение обусловило быстрое развитие кислородного производства [13], так как создало возможность постройки кислородных заводов большой мощности. [c.302]


    Денисенко Г. Ф Файнштейн В. И. Техника безопасности при производстве кислорода. М., Металлургия, 1968. [c.349]

    Такие темпы роста обусловливались и ак строительством новых заводов, так и интенсификацией производства за счет все более расширяющегося использования в черной металлургии природного газа и кислорода. , [c.672]

    Указания по проектированию производств кислорода и других продуктов разделения воздуха (У-866-00/3). Изд-во Металлургия , 1964. [c.217]

    Впервые катализаторы очистки газов в виде пакетов из множества тонких фарфоровых трубок-стержней, покрытых платиной и расположенных в шахматном порядке, разработаны в 50-е годы [49]. В плане создания пористых монолитных катализаторов интерес представляют исследования [44], проведенные во Франции в 50-х годах, по конструированию пористых (25%) керамических плит на основе ZrO и СаО с неупорядоченными каналами, получаемых методом порошковой металлургии. Указывалось на возможность широкого использования катализаторов на пористых плитах дп очистки инертных газов от кислорода и ряда других процессов. [c.183]

    Переход к искусственно создаваемым нестационарным режимам для системы газ - твердое позволяет надеяться на значительную интенсификацию таких процессов, как обжиг руд в цветной металлургии, взаимодействие твердого материала с кислородом газовой фазы, где возбуждение системы производится варьированием начальной конценфации кислорода. [c.304]

    Черная металлургия может и далее снижать расход топлива благодаря увеличению доли природного газа, большему применению кислорода, повышению температуры дутья и давления газов на колошнике, росту применения агломерата, окатышей и повышению содержания железа в железорудной части шихты. Установлено, что повышение в шихте агломерата и окатышей на 1% дает снижение расхода топлива на 0,2%, повышение содержания железа на 1 % снижает расход топлива на 2%, увеличение температуры дутья на 1° С уменьшает расход топлива на 0,02%. Ну/Кйо иметь в виду, что в данном случае будет экономиться в основном кокс, т. е. самое дорогое топливо. [c.200]

    Реактор типа конвертора. Этот реактор имеет форму цилиндра с диаметром, превышающим высоту. Конвертор, используемый в черной металлургии, — это реактор, в котором кислород, необходимый для окисления примесей, вводится в нижней части в массу расплавленного металла. Реактор типа конвертора используется в процессах, которые протекают в гетерогенной системе газ — жидкость. [c.351]


    Такие низкокипящие сжиженные газы, как жидкие кислород, азот и метан, давно нашли широкое применение в химии, машиностроении, металлургии, приборостроении, ракетной технике, атомной энергетике и ряде других отраслей промышленности. В последние годы наблюдается значительное расширение масштабов производства и применения также жидкого водорода. [c.5]

    Чистый кислород или обогащенный кислородом воздух используются в процессах конверсии углеводородных газов, в металлургии, для окисления в органическом синтезе, в качестве окислителя в ракетной технике, в медицине. Жидкий азот применяется для тонкой очистки водорода от оксида углерода (II) и метана, получения АВС стехиометрического состава, в качестве хладоагента. [c.229]

    В предьщущих главах учебника уже отмечалось, что металлические элементы обладают характерным свойством - они теряют электроны в химических реакциях. Разумеется, образующиеся положительно заряженные ионы (катионы) не остаются изолированными, а существуют в окружении анионов, в результате чего сохраняется равновесие зарядов. Кроме того, катионы металлов обладают свойствами льюисовых кислот (см. разд. 15.10). Это означает, что они способны связываться с нейтральными молекулами либо анионами, если таковые обладают неподеленными парами электронов. Мы уже неоднократно упоминали о таких соединениях, в которых катион металла окружен группой анионов или нейтральных молекул. Например, о частице Л (СН)2 мы говорили в разд. 22.6, где обсуждались проблемы металлургии в разд. 10.5, ч. 1, где рассматривалась способность крови к переносу кислорода, упоминался гемоглобин, а в разд. 16.5 при обсуждении равновесий мы встречались с частицами Си(СН)4 и Л (ЫНз)2. Подобные частицы называются комплексными ионами или просто комплексами, а соединения, содержащие такие ионы,-координационными соединениями. [c.370]

    Химические свойства углерода. Углерод является типичным неметаллом (см. разд. 11.4). При низких температурах и уголь, и графит и, в особенности, алмаз инертны. При нагревании их активность увеличивается уголь легко соединяется с кислородом и служит хорошим восстановителем. Важнейший процесс металлургии — выплавка металлов из руд — осуществляется путем восстановления оксидов металлов углем (или монооксидом углерода). [c.409]

    Кремний применяется главным образом в металлургии и в полупроводниковой технике. В металлургии он используется для удаления кислорода из расплавленных металлов и служит составной частью многих сплавов. Важнейшие из них — это сплавы на основе железа, меди и алюминия. В полупроводниковой технике кремний используют для изготовления фотоэлементов, усилителей, выпрямителей. Полупроводниковые приборы на основе кремния выдерживают нагрев до 250 °С, что расширяет область их применения. [c.415]

    В металлургии степень кислотности шлаков измеряется отношением общего количества кислорода, связанного в кислотных оксидах, к количеству кислорода, связанного в основных оксидах. Вычислить кислотность шлака такого состава 44% оксида кремния, 12% оксида кальция и 34% оксида железа (П), [c.108]

    ГЕТЕРОГЕННОЕ РАВНОВЕСИЕ —химическое равновесие в гетерогенной системе, т. е. в системе, имеющей поверхности раздела, которые разделяют однородные части системы. Изучение Г. р. имеет большое практическое значение для металлургии (гетерогенную систему из руды, флюса, топлива и кислорода следует привести к Г. р. металл—шлак), химической технологии, минералогии и петрографии (процессы выделения минералов из расплавленных магм и образование горных пород) и т. п. Основы учения [c.70]

    Опишем концентрационный кислородный элемент с уже упоминавшимся твердым электролитом, применение которого в последнее время приобрело большое значение в металлургии, особенно при конверторно-кислородном производстве. Он используется для экспрессного определения концентрации кислорода в стали по ходу плавки. Вероятно, с помощью такого элемента удастся не только непрерывно измерять и записывать величину [01, но и использовать его в системе автоматического управления конверторной плавкой. Схема подобного кислородного элемента имеет вид  [c.177]

    Благодаря высокой восстановительной способности кремния он находит применение в металлургии для удаления растворенного в расплавленных металлах кислорода. [c.93]

    Впервые металлы титан и цирконий были использованы в металлургии в качестве раскислителей и дегазаторов, так как они при высоких температурах активно соединяются с азотом, кислородом и другими газами и способствуют получению плотных, однородных слитков. [c.127]

    Кислород широко используют практически во всех отраслях химической промышленности для получения азотной и серной кислот, в органическом синтезе, в процессах обжига руд и др. Процесс производства стали невозможен без кислорода, металлургия использует свып1е 60% всего промышленного кислорода. [c.199]


    Задача 15.2. В металлургии степень кислотности шлаков определяется отношением общей массы кислорода, связанного в кислотных оксидах, к массе кислорода, связанного в основных оксидах. Вычислить кислотность шлака с массовыми долями окспда кремния (IV) [c.220]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Чистый магний находит применение а металлургии. Магнийтер-мическим методом получают некоторые металлы, в частности титан. При производстве некоторых сталей и сплавов цветных металлоа магний используется для удаления из них кислорода и серы. Весьма широко применяется магний в промышлеиности органического синтеза. С его помощью получают многочисленные вещества, принадлежащие к различным классам органических соединеинй, а также элемеиторганические соединения. Смеси порошка магння с окислителями употребляются при нзготонленни Осветительных и зажигательных ракет. [c.613]

    Древнегреческие философы не придавали никакого значения точным измерениям массы в химических реакциях. Об этом не думали и средневековые европейские алхимики, металлурги и ятрохимики (химики, применявшие свои знания в медицине). Первым, кто осознал, что масса является фундаментальным свойством, сохраняющимся в процессе химических реакций, был великий французский химик Антуан Лавуазье (1743-1794). Суммарная масса всех продуктов химического превращения должна точно совпадать с суммарной массой исходных веществ. Установив этот закон, Лавуазье опроверг прочно укоренившуюся флогистонную теорию горения (см. гл. 6). Он показал, что при сгорании вещества оно соединяется с другим элементом, кислородом, а не разлагается с выделением гипотетического универсального вещества, которое называли флогистоном. Закон сохранения массы является краеугольным камнем всей химии. Но в химических реакциях сохраняется не только суммарная масса веществ до начала реакции и после ее окончания должно иметься в наличии одно и то же число атомов каждого сорта независимо от того, в сколь сложных превращениях они участвуют и как переходят из одних молекул в другие. [c.63]

    В нефтяной промышленности процессы с псевдоожиженным слоем применяются и в ряде других областей в процессах контактного коксования, гидроформинга, обессеривания, адсорбционного разделения углеводородов и т. д. Кроме того, техника псевдоожиженного слоя применяется и в других технологических процессах — в черной металлургии, химической промышленности (например, при производстве чистой окиси хрома из хромистых руд, при коксовании углей, выделении кислорода из воздуха путем адсорбции кислорода в псевдоожиженном слое манганитом кальция, плюмбитом кальция или окисью маоганца при производстве сероуглерода из пылевидного угля и паров серы, в производстве водорода при взаимодействии закиси железа с водяным паром в реакторе с последующей регенерацией окиси железа и т. д.). [c.8]

    Применение. Более половины получаемого кислорода расходуется в черной металлургии для интенсификации выплавки,. чугуна и стали. В смеси с ацетиленом С2Н2 кислород используют для сварки и резки металлов, при горении этой смеси пламя имеет [c.442]

    Значительно ускоряет производство и улучшает качество получаемого металла применение кислорода дутье воздуха, обогащенного кислородом, в доменные печи, и пропускание в металл чистого кислорода на определенных этапах конверторного и мартеновского процессов (это умёньшает содержание азота, вредно влияющего на свойства стали). Внедрение кислорода в черную металлургию было осуществлено в СССР по инициативе акад. И. П. Бардина. [c.556]

    В 1735 году в качестве топлива в доменных печах был предложен вместо древесного угля каменноугольный кокс и с XIX века началось его интенсивное внедрение в доменное производство, что способствовало развитию черной металлургии в степных безлесных районах. В 18 8 году был выдан патент на применение в доменных печах для дутья подогретого воздуха. Это позволило за счет повышения температуры в горне сократить расход топлива и увеличить производительность печи. В1832 году в конструкцию доменной печи был введен закрытый колошник, что обеспечило возможность улавливания доменного газа и его использование в качестве топлива для подогрева дутья, одновременно улучшив экологию. Дальнейшее совершенствование доменного процесса заключалось в применении обогащенного кислородом воздушного дутья, повышении давления дутья, использовании газообразного и жидкого топлива для снижения расхода кокса в связи с дефицитом коксующихся углей. [c.48]

    Процессы в расплаве являются вариантом газификации угля в режиме уноса. В них уголь и газифицирующий агент подаются на поверхность расплавов металлов, шлаков или солей, которые играют роль теплоносителей. Наиболее перспективен процесс с расплавом железа, поскольку можно использовать имеющиеся в ряде стран свободные мощности кислородных конвертеров в черной металлургии [97]. В данном процессе газогенератором служит полый, футерованный огнеупорным материалом аппарат-конвертер с ванной расплавленного (температура 1400—1600°С) железа. Угольная пыль в смеси с кислородом и водяным паром подается с верха аппарата перпендикулярно поверхности расплава с высокой скоростью. Этот поток как бы сдувает образовавшийся на поверхности расплава шлам и перемешивает расплав, увеличивая поверхность его контакта с углем. Благодаря высокой температуре газификация проходит очень быстро. Степень конверсии углерода достигает 98%, а термический к. п. д. составляет 75— 80%. Предполагается, что железо играет также роль катализатора газификации. При добавлении в расплав извести последняя взаимодействует с серой угля, образуя сульфид кальция, который непрерывно выводится вместе со шлаком. В результате удается освободить синтез-газ от серы, содержащейся в угле, на 95%. Синтез-газ, полученный в процессе с расплавом, содержит 677о (об.) СО и 28% (об.) Нг. Потери железа, которые должны восполняться, составляют 5—15 г/м газа. [c.97]

    Синтез-газ, используемый для получения метанола и для оксосинтеза, представляет собой смесь водорода и окиси углерода, Производство синтез-газа является также промежуточной стадией процесса получения водорода. Синтез-газ можно получить некаталитически, в частности при взаимодействии кислорода и водяного пара с углем, коксом или жидкими углеводородами. Мы рассмотрим только каталитические процессы. К ним близки также процессы получения газов для синтеза аммиака и процессы получения восстановительных газов (защитных атмосфер) для металлургии. [c.159]

    Как энергетическая составная часть сырьевых материалов в цветной металлургии сера занимает особое место. Из-за низких температур плавления (112,4°С) и кипения (444,8°С) при отсутствии в газовой фазе окислителей (кислород, углекислота) сера еще при низких температурах начинает плавиться и испаряться, унося с собой, некоторое-количество тепла, которое теряется для зоны тех нологичеокого процесса. [c.163]

    Использование температур, соответствующих глубокому охлаждению, позволяет разделять газовые смеси путем их частичного или полного сжижения и получать многие технически важ1[ые газы, например азот, кислород и другие газы (при разделении воздуха), водород из коксового газа, этилен из газов крекинга нефти и т. д. Эти газы широко используются в различных отраслях промышленности. Так, современная холодильная техника обеспечивает значительную интенсификацию доменных процессов черной металлургии путем широкого внедрения в них кислорода. Весьма перспективно применение дешевого кислорода для интенсификации многих химико-технологических процессов (производство минеральных кислот и др.). [c.646]

    В отличие от других металлов, рассматриваемых в настоящей главе, 90—95% Добываел ого марганца применяется в черной металлургии для раскисления, обессеривания и легирования стали. Марганец легко взаимодействует с кислородом и серой и удаляется со шлаком, освобождая сталь и чугун от этих элементов. Для такой цели применяется иногда марганцевая руда, но чаще —ферросплавы марганца, выплавляемые из руд в электротермических или в доменных печах с углеродом в качестве восстановителя. [c.279]

    При изучении доменного процесса и его химизма на основе знаний об окислительно-восстановительных реакциях можно применить кинофрагмент Получение чугуна в сочетании с красочной схемой Доменная печь . Это позволяет ознакомить учащихся со схемой доменного процесса, химизмом плавки, устройством и принципом действия колошников, воздухонагревателя и т. д. Кинофильмы Доменный процесс , Металлургия чугуна и стали , кинофрагменты Воздухонагреватель , Загрузка доменной печи , Устройство и работа доменной печи , киноколь-цовка Теплообмен в доменной печи могут найти применение на этапе закрепления знаний о производстве чугуна. Для ознакомления с производством стали целесообразно применить диафильмы Получение металлов из руд , диасерию Производство стали и чугуна , кинофрагменты и кинофильмы Применение кислорода в производстве стали , Устройство и работа мартеновской печи и др. [c.60]

    В металлургии и металловедении концентрации часто выражают в процентах по массе, при этом соответствующие величины для веществ, растворенных в металле, заключают в квадратные скобки, а в шлаке — в круглые. Например, [С или [О] означают концентрации углерода и кислорода в металле, а (FeO) или (SiOj) — закиси железа и кремнезема в шлаке. [c.80]

    Примепеине. Более половины получаемого кислорода расходуете в черной металлургии для интенсификации процессов выплавки чугуна и стали. В смеси с ацетиленом кислород используют для сварки и резки металлоа, при горении этой смеси развивается температура я 3200 С. Пламя горящего в кислороде природного газа применяют при плавлении кварца и других тугоплавких веществ. В горелках для стеклодувных работ используют воздух с добавкой кислорода. Жидкий кислород применяют как окислитель в ракетных ТОПЛИВАХ. [c.436]

    Фосфор — более активный элемент, чем азот он легко соединяется с кислородом, серой, галогенами и многими металлами. Соединения фосфора с металлами называются фосфидами. Они имеют практическое применение в осветительных составах (MgsPj, ZnaPa и др.) и как средство для борьбы с вредителями сельского хозяйства. Фосфор используется в спичечном производстве, в металлургии для получения и легирования полупроводниковых материалов, в химической промышленности. [c.134]


Библиография для Кислород в металлургии: [c.173]   
Смотреть страницы где упоминается термин Кислород в металлургии: [c.130]    [c.437]    [c.82]    [c.127]    [c.138]    [c.169]    [c.279]    [c.170]   
Общая химическая технология Том 2 (1959) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Металлургия



© 2025 chem21.info Реклама на сайте