Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гибридизация и полярность

    Необходимо раскрыть содержание термина энергия связи . Схема потенциальной энергии произвольной А—В-связи в многоатомной молекуле (рис. 4.1) служит для объяснения данного понятия. Для многоэлектронных атомов, как было отмечено выше, следует учитывать, что валентное состояние может лежать выше соответствующего основного состояния. Если в таком случае два атома находятся в своих основных состояниях, то никакой связи между ними возникнуть не может если же они сближаются друг с другом, то их потенциальная энергия будет возрастать. На определенном межатомном расстоянии потенциальная энергия системы будет приближаться к энергии атомов в валентных состояниях (рис. 4.1, пунктирная линия), и может произойти переход к связанному состоянию. Поэтому внутренняя энергия связи Е равна разности энергий основного молекулярного состояния и валентного состояния, соответствующего бесконечному расстоянию между атомами. Энергия диссоциации О меньше Е на величину энергии нулевых колебаний /lv/2 н на сумму Р энергий перехода, гибридизации, полярного и стерического упорядочения, необходимых для достижения валентного состояния. Разность между энергией нулевых колебаний и максимумом кривой потенциальной энергии равна [c.100]


    Результаты расчетов волновых функций и различных характеристик молекул часто не воспринимаются химиками, более привычными к таким понятиям, как гибридизация, полярность связи, энергии ион-дипольных, диполь-дипольных взаимодействий и т. д. Привлекательность этих понятий состоит в их простоте, причем они чаще всего использовались и используются неспециалистами при изучении электронного строения больших молекул. В этом разделе проведена аналогия между этими понятиями и данными строгого расчета. [c.126]

    В молекулах SO2 и SO3 атом серы находится в состоянии р -гибридизации. Полярны ли эти молекулы Какова их пространственная структура  [c.66]

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]

    Ослабление признаков неметаллических элементов в ряду Аз — 5Ь — В проявляется также в их соединениях с водородом НзЭ. Строение молекул НзЭ аналогично строению HзN и НзР. Но по мере увеличения размеров электронных облаков в ряду N — Р — Аз — 5Ь — В1 полярность и прочность связи Э—Н уменьшается. По этой же причине участие з -электронов в гибридизации ослабевает, значение валентного угла НЭИ приближается к 90° и наблюдается уменьшение дипольного момента молекул. [c.426]

    При достаточно полярном характере связи Z—X, обусловленном большой разностью электроотрицательностей, на центральном атоме возникает поле положительного заряда. Это поле несколько сжимает электронные облака центрального атома, причем орбитали гз и йх у благодаря своей большей поляризуемости сжимаются сильнее, чем другие -орбитали. Та ким образом, сильная полярность связей в молекуле из-за большой разности электроотрицательностей может сказываться на размерах 3s-, Зр- и З -орбиталей, что в свою очередь делает возможным осуществление вышеуказанной гибридизации. [c.518]


    Критерий полярности (ионности) химической связи по Горди, хотя и основан на результатах прецизионных измерений, также следует рассматривать как приближенный, качественный критерий это связано с тем, что на величину eQq должны влиять гибридизация связывающих орбиталей, образование л-связей и другие эффекты, учесть которые полностью не представляется возможным. [c.136]

    Понятие о гибридизации атомных орбиталей с- и л-связи. Геометрические формы молекул. Полярные и неполярные молекулы. [c.41]

    Важными характеристиками ковалентной связи, влияющими на свойства вещества, являются длина, энергия, насыщаемость, направленность, полярность, поляризуемость связи, валентный угол, гибридизация орбиталей. [c.65]

    Определите взаимосвязь между такими параметрами, как направленность связи и гибридизация орбиталей, направленность связи и валентный угол, энергия связи и полярность, энергия связи и гибридизация орбиталей  [c.71]

    Изобразите атомно-орбитальную модель молекулы метиламина. Укажите тип гибридизации атомов азота и углерода. Охарактеризуйте полярность имеющихся химических связей. Сравните водородные связи аминов и спиртов. [c.72]

    Многообразие органических соединений и их многочисленность объясняются особенностями строения атома углерода. Углерод расположен в середине второго периода системы Д, И, Менделеева, Его атомы в возбужденном состоянии (s p ) обладают различными формами гибридизации ( , / р, q p ), способными переходить друг в друга в зависимости от условий. Кроме того, атом углерода, реагируя с атомами с различной электроотрицательностью или с группами атомов, может во вновь образованных молекулах органических соединений являться центром положительного или отрицательного заряда, образуя таким образом ковалентно-полярные связи с различной поляризацией. Направленность [c.437]

    Встречаются случаи, когда гибридизация орбиталей увеличивает полярность молекул. Например, полярность молекулы аммиака значительно возрастает вследствие заполнения неподеленной парой электронов одной из четырех зр -гибридных орбиталей. В результате этого сильно смещается центр тяжести отрицательных зарядов и увеличивается полярность молекулы (рис. 24). [c.112]

    Сопоставление длин связей в сэндвичевых комплексах разного типа затруднено, так как здесь варьируют одновременно тип гибридизации, полярность и КЧ атомов. Однако ряд эмпирических закономерностей был обнаружен. Так, Стручков [129] на примере комплексов типа СрРе ЬЪ Ъ ", где ЬЪ Ъ "-различные лиганды, установил, что Гп(Ре—С) заметно больше, чем в ферроцене, причем длины ст-связей Ре—С имеют тенденцию к сокращению по мере удлинения я-связи. Леонг [130] установил, что существует линейная зависимость между длиной связи М—С и зарядом на лиганде. [c.105]

    Укажите надлежащую гибридизацию валентных орбиталей центрального атома и предскажите форму и полярность каждой из следующих молекул а) СЗз б) СВГ4 в) РРз г) НзТе д) 81Н4 е) 8р2 ж) ВРз  [c.597]

    Лекция э. Гибридизация волновых функций. Донорно-акцепторный и дативный механизм образования ковалентной связи. Образование кратких связей. Сигма-и пи-связи, их особенности. Делокализвванные пи-связи. Лекция 6. Полярная и неполярная ковалентная связь. Э(М)вктивные заряды атомов в молекулах. Ионная связь как крайний случай поляризации ковалентной связи. Свойства ионной связи. Поляризуемость ионов и их взаимное поляризующее действие. Влияние системы поляризации ионов на свойства веществ. [c.179]

    Вследствие sp -гибридизации валентных орбиталей атома азота несвязывающее двухэлектронное облако отчетливо ориентировано в пространстве (см. стр. 68). Поэтому молекула H3N — резко выраженный донор электронной пары и обладает высокой полярностью (р= = 1,46 D). [c.391]

    Для молекулы NH j характерна 5/) -гибридизация, угол между связями N—Н равен 107,3" и близок к тетраэдру (см. рис. 5.3), Несвязывающее двухэлектроиное облако (.s ) вытянуто от ядра атома азота к вершине тетраэдра, поэтому NH3 обладает высокой полярностью ( 1 = 1,48). Жидкий аммиак имеет высокую теплоту испарения и используется как рабочее вещество холодильных машин. [c.307]

    В свободном атоме или ионе комплексообразователя энергии всех ( -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы, т. е. эти электроны занимают один энергетический уровень. В комплексе положительный ион-кэмплексообразователь окружен лигандами, которые могут быть или отрицательными ионами, или полярными молекулами, которые обращены к комплексообразователю своим отрицательным концом. Между электронами /-орбиталей иона-комплексообразователя и отрицательными лигандами действуют силы отталкивания, которые увеличивают энергию /-электронов. При этом электростатическое воздействие лигандов на различные /-орбитали неодинаково, так как поле лигандов не обладает сферической симметрией. Поэтому энергия электронов на /-орбиталях, расположенных близко к лигандам, возрастает больше, а на /-орбиталях, удаленных от лигандов, меньше в результате под Таблица 1.13. Ти/1ы гибридизации и соответствующие им геометрические формы комплексов [c.130]


    Интересно отметить, что гибридные 5р с -орбитали по теории валентной связи направлены к вершинам тригональной бипирамиды, и они не являются эквивалентными, как, ианример, 5р -орбитали. И действительно, для этой гибридизации было пoкaзaнo что максимальное перекрывание орбиталей окружающих атомов с экваториальной орбиталью центрального атома происходит на несколько меньшем межъядерном расстоянии, чем с полярной орбиталью. Однако следует еще раз подчеркнуть, что это просто удобное описание, а не объяснение различия в длине между полярной и экваториальной связями. [c.221]

    Гиллеспи, по нашему мнению, не имеет принципиальных преимуществ перед концепцией гибридизации в методе локализованных пар и не всегда ее предсказания верны Наконец, всегда остается возможность оценить конфигурацию молекз лы сравнительным методом, основанным на периодическом законе, и это один из наиболёе надежных способов. Тем же методом вполне удовлетворительно оцениваются и межъядерные равновесные расстояния [к-42]. Можно также переносить значения длины связи из простейших мадгекул в более сложные, если не требуется высокой точности. Часто длину связи оценивают как сумму так называемых ковалентных радиусов атомов + Так как изолированных атомов в молекуле не существует, естественно, что понятие атомных радиусов является чисто эмпирическим. Разделив пополам межъядерное расстояние в гомонуклеарных двухатомных молекулах С12, Вг2, Гд и других или в кристаллах элементов С, 81 и других, находят радиусы атомов С1, Вг, I, С, 81 и др. В эти величины вводят эмпирические поправки, как, например, в Лд или, для лучшего согласия с опытными значениями Гдв Так получена система ковалентных радиусов Полинга. Для соединений с заметной полярностью связи используют формулу Шумейкера — Стивенсона  [c.203]

    В молекуле воды угол между связями О—Н равен не 90°, как это можно было ожидать, исходя из угла между осями двух р-орбиталей атома кислорода, а приближается к тетраэдрическому (109,5°) и составляет 104,5°. Вероятно, это можно объяснить зр -гибридизацией (см. гл. 3 3.4) четырех атомных орбиталей кислорода, две из которых содержат неподеленные электронные пары, и, не являясь связывающими, лишь искажают валентный угол И—О—Н. sp -Гиб-ридизация, как отмечалось ранее, способствует более полному перекрыванию гибридной орбитали с орбиталью другого атома и, следовательно, упрочняет связь, что приводит к понижению внутренней энергии системы. Из-за sp -гибридизации всех орбиталей азота и в молекуле аммиака угол Н—N—Н близок к тетраэдрическому и равен 106,5°. Такими углами между полярными связями и значениями электрических моментов их диполей (1,51 10-2 для О—Н и 1,31 10 29Кл м для N—Н ) можно объяснить значения электрических моментов 1,84 10 2 Кл м для молекулы HjO и 1,46 х X 10 2 Кл м для молекулы NH3. [c.116]

    Р-орб.италей атома азота, а за счет орбиталей, претерпевших частичную гибридизацию 5Р Это приводит к орпеытацпи неподеленной пары 2 5 — электронов атома азота. Поэтому молекула НзН — резко выраженный донор электронп.ой пары и обладает высокой полярностью. [c.34]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Сероводород — бесцветный газ, тяжелее воздуха, обладающий неприятным апахом. Он очень токсичен. Отравляющее действие сероводорода объясняют его взаимодействием с железом гемоглобина. 1ри этом функция гемоглобина как переносчика кислорода нарушается или вовсе парализуется. Химическое строение H2S аналогично строению воды, если не учитывать малую степень гибридизации атома серы. Молекула Н- З намного менее полярна, чем молекула воды, вследствие того, что ОЭО серы меньше, чем кислорода. [c.323]

    При образовании активированного комплекса в той или иной мере затрагивается большое число атомов и химических связей в реагирующих частицах, а в случае реакций в растворах — и окружающих молекул растворителя. Например, в реакции 1идро-лиза иодистого метила (П1.83) разрывается связь С—1 и образуется связь С—О. Однако, помимо этого, при образовании активированного комплекса изменяется тии гибридизации юлекуляриых орбиталей связей С—Н, изменяется полярность связи О—Н и, как уже указывалось в начале этой главы, существеииой перестройке подвергаются сольватные оболочки вокруг реагирующих частиц. Тем не менее основными участниками химического превращения в этой реакции являются атомы С, I и О, и совокупность этих атомов можно рассматривать как реакционный центр активированного комплекса (можно изобразить этот реакционный центр I виде О). Реакционные центры различаются по числу формирующих их атомов, В зависимости от этого активированный комплекс называют двухцентровым, трехцентровым и т, п. Связи между атомами в реакционном центре могут образовывать незамкнутую или замкнутую линию, В зависимости от этого активированный комплекс называют линейным или циклическим. В рассмотренном выше примере реакция (И 1,83) идет через линейный трехцентровый активированный комплекс. [c.136]

    Молекулы, состоящие более чем из двух атомов, в которых могут быть полярные связи, не обязательно должны быть полярны. Линейная молекула диоксида углерода 0=С=0 или треугольная молекула фторида бора ВРз неполярны, несмотря на наличие полярных связей, так как вследствие симметричности расположения связей центры тяжести положительных и отрицательных зарядов молекул находятся в центре молекул. Гибридизация связей (например, зр, зр , зр , зр сР) приводит к тому, что молекулы и ионы оказываются неполярными. Если же связи образованы двумя или тремя чистыми р-орбиталями (НаЗ, АзС1з), то молекулы полярны. [c.112]

    Сероводород — бесцветный газ тяжелее воздуха, обладающий неприятным запахом. Он очень токсичен. Отравляющее действие < ероводорода объясняют его взаимодействием с железом гемоглобина. При этом функция гемоглобина как переносчика кислорода нарушается или вовсе парализуется. Химическое строение H2S аналогично строению воды, если не учитывать малую степень гибридизации орбиталей атома серы. Молекула H2S намного менее полярна, чем молекула воды, вследствие того, что ОЭО серы меньше, чем кислорода. Поэтому в сероводороде водородные связи практически отсутствуют в любом агрегатном состоянии. Собственная ионизация сероводорода ничтожна, и его ионное произведение [Нз8 ][Н8 ] = Ю ЗЗ. В воде ионизация сероводорода [c.441]

    Строение кольца бензола определяется формой гибридизации атомных орбиталей углеродного атома и, несмотря на наличие трех двойных связей, обладает очень в1э1С0К0Й устойчивостью. Если в молеку.- е бензола нет замещающих водород атомов или функциональных групп, то все атомы углерода в кольце бензола равноценны и л-связи, возникающие за счет р-орбиталей гибридизированных соседних атомов, могут мигрировать между парами атомов, создавая общую молекулярную л-орбиталь. На рис. 219 схематически показано строение цикла бензола. При наличии замещенных атомов водорода и возникновении более полярных связей распределение электронов в атомах, находящихся в различных положениях от замещенного атома водорода, изменяется. [c.461]


Смотреть страницы где упоминается термин Гибридизация и полярность: [c.66]    [c.54]    [c.218]    [c.101]    [c.46]    [c.95]    [c.297]    [c.186]    [c.320]    [c.91]    [c.360]    [c.530]    [c.82]    [c.118]    [c.66]    [c.268]    [c.469]    [c.1238]   
Теоретические основы органической химии (1973) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Гибридизация



© 2025 chem21.info Реклама на сайте