Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород орбитали атомные и молекулярные

Рис. 7. Образование связующих и разрыхляющих молекулярных орбиталей в молекуле кислорода из атомных 5- и )-opби- Рис. 7. <a href="/info/7225">Образование связующих</a> и разрыхляющих <a href="/info/1199">молекулярных орбиталей</a> в <a href="/info/6804">молекуле кислорода</a> из атомных 5- и )-opби-

    Каковы правила заполнения электронами атомных и молекулярных орбиталей В чем сущность соблюдения условий минимума энергии, принципа Паули и правила Гунда Покажите их применение на примере атома и молекулы кислорода. [c.53]

    Некоторые молекулы, хотя они на первый взгляд являются валентно насыщенными системами, так как их валентные электроны попарно заселяют молекулярные орбитали, отнюдь не лишены способности соединяться химическими связями с другими молекулами, не разрывая при этом своих собственных межатомных связей. Одни из этих молекул для этого должны иметь незанятые валентные орбитали, а другие — неподеленные пары электронов. Таким образом, одни молекулы проявляют способность присоединять другие молекулы до тех пор, пока не будут заняты все их валентные орбитали. Как известно, р -орбиталь бора не занята в молекуле ВРз. Поэтому эта молекула присоединяет молекулу аммиака, атом азота которой имеет на валентной орбитали одну пару неподеленных электронов, причем образуется донорно-акцеп-торная связь, почти ничем не отличающаяся от других ковалентных связей. Следовательно, нет оснований называть подобные соединения молекулярными комплексами — это настоящие атомные, а не молекулярные соединения. Связи подобного типа с донорами электронов могут образовать также молекулы — соединения бериллия, алюминия и др. В молекулах типа ВеРг имеются две незанятые валентные орбитали. Благодаря этому фторид бериллия присоединяет две молекулы диэтилового эфира, кислород которого служит донором электронов. Если в молекулах имеются незанятые валентные орбитали и недостаточное количество электронов для их нормального заселения парами электронов, как, например, в молекулах бороводородов, то эти молекулы в ряде случаев соединяются друг с другом путем делокализации всех валентных электронов между всеми молекулярными орбиталями, в результате чего все они оказываются частично заселенными электронами и между молекулами образуются настоящие химические связи. Это относится не только к взаимодействию молекул диборана с образованием высших боранов, но и к конденсации атомов металлов, в результате которой получаются твердые металлы. Атомы металлов также имеют незаселенные валентные орбитали, которые при конденсации сливаются в валентную зону и таким образом становятся достоянием всех валентных электронов. [c.88]


    На примере молекулы ЫОг рассмотрим более подробно строение трехатомных молекул угловой формы с л-связями. В образовании молекулы ЫОг принимают участие 25-, 2р -, 2ру- и 2р -орбитали атома азота, 2р -, 2ру- и 2р -ор-битали двух атомов кислорода. Из десяти атомных орбиталей образуются десять молекулярных орбиталей. Поскольку молекула N02, как и Н2О, имеет угловую форму, то о-орбитали N 2 аналогичны ст-орбиталям молекулы Н2О (с. 312). Это пять молекулярных орбиталей и и [c.362]

    Метод НДП позволяет обнаружить наличие неподеленной нары. Нанример, у молекулы формальдегида диагональные элементы Матрицы плотности (заряды на атомных орбиталях) на АО атомов углерода и кислорода близки к единице, тогда как на АО атома кислорода 0(з) заряд равен. 1,7670, на 0(рж) — 1,9147, т. е. электронные облака таковы, как если бы на этих атомных орбиталях располагалось по два электрона, что соответствует модели неподеленной пары. Однако следует заметить, что и 0(з), и 0(р ) входят в большинство МО наряду с другими АО. Правда, есть молекулярная орбиталь [c.94]

    Шесть орбиталей угловой молекулы воды НаО возникают при комбинации четырех атомных орбиталей кислорода (2з,- 2рх, 2ру- и 2р -) и двух 15-орбиталей двух атомов водорода. Заполнению электронами двух ст -орбиталей (ст и ст ) отвечает наличие в молекуле НаО двух ст-связей О—Н заполнению двух несвязывающих молекулярных орбиталей (обозначаемых ст и Пу) отвечает наличие при атоме кислорода двух несвязывающих электронных пар. В соответствии с таким распределением электронов по орбиталям молекула воды имеет ч е т ы-р е первых потенциала ионизации (27,5 16,2 14,5 и 12,6 эв). [c.102]

Рис. 17.3. Заполнение электронами молекулярных орбиталей в молекуле кислорода Ог и взаимосвязь между молек> лярными орбиталями Ог и атомными орбиталями изолированных атомов О. Следует обратить-внимание на то, что в молекуле Ог результируюо1ее число связывающих электронов оказывается равным 4, а два разрыхляющих электрона с самыми высокими энергиями не спарены. Систему обозначений молекулярных орбиталей поясни. г на пр1г.мере самой верхней орбитали сначала указывают, из какой атомной орбитали образована данная МО (2р). затем обозначают симметрию МО (ст) и ее связывающий илп разрыхляющий характер ( ) полное обозначение рассматриваемой. МО — 2ра. Необходимо также отмстить, что-1х-электроиы в молекуле Ог остаются иа практически не изменившихся атомных орбиталях. Рис. 17.3. Заполнение <a href="/info/707822">электронами молекулярных орбиталей</a> в <a href="/info/6804">молекуле кислорода</a> Ог и <a href="/info/939508">взаимосвязь между</a> молек> лярными орбиталями Ог и <a href="/info/1197">атомными орбиталями</a> изолированных атомов О. Следует обратить-внимание на то, что в молекуле Ог результируюо1ее число связывающих электронов оказывается равным 4, а два разрыхляющих электрона с самыми <a href="/info/387397">высокими энергиями</a> не спарены. Систему <a href="/info/1847192">обозначений молекулярных</a> орбиталей поясни. г на пр1г.мере самой верхней орбитали сначала указывают, из какой <a href="/info/273413">атомной орбитали</a> образована данная МО (2р). затем обозначают симметрию МО (ст) и ее связывающий илп разрыхляющий характер ( ) полное обозначение рассматриваемой. МО — 2ра. Необходимо также отмстить, что-1х-электроиы в молекуле Ог остаются иа практически не изменившихся атомных орбиталях.
    Строение молекулы кислорода целесообразно рассмотреть, пользуясь методом МО. Электроны, заполняющие орбиталь и практически не участвующие в образовании связей, мы рассматривать не будем. Можно сказать, что для образования молекулярных орбиталей в молекуле кислорода имеется по четыре атомные орбитали у каждого атома орбитали 25 и 2р г заняты парами электронов, а на каждой из орбиталей 2ру и 2рх находится по одному неспаренному электрону (их энергии равны до тех пор, пока они не попадают в поле другого атома при взаимодействии атомов энергетические уровни делаются разными — снимается вырождение ). При сближении двух атомов каждый уровень расщепляется на два уровня — связывающую и разрыхляющую орбитали. Следовательно, в молекуле кислорода имеется всего восемь орбиталей (четыре из них — связывающие), на которых размещается двенадцать электронов. Очевидно, помещая на каждую связывающую орбиталь по паре электронов, можно разместить восемь электронов. Четыре придется поместить на разрыхляющие орбитали. Всего получится четыре связывающие и две разрыхляющие орбитали, т. е. в итоге две связи, так как каждая разрыхляющая орбиталь компенсирует действие одной связывающей. [c.185]

    Энергия связывающей а-орбитали, образовавшейся между различными атомами, ниже, чем соответствующих атомных орбиталей, и молекулярная орбиталь обладает характеристиками, подобными атомной орбитали с низкой энергией (велико взаимодействие с другими атомными ядрами). Энергия разрыхляющей а-орбитали выше, чем у каждой атомной орбитали, и она обладает свойствами, подобными атомной орбитали с более высокой энергией. В карбонат-ионе а-орбиталь а-связи локализована в плоскости орбиталей О, и взаимодействие с ядром О сильнее, чем с ядром С. Это четко проявляется в сдвиге в сторону кислорода участвующих в связи электронов (табл. 4.4). Напротив, плоскость, в которой локализована молекулярная я-орбиталь, перпендикулярна плоскости, в которой локализована а-орбиталь, и она обладает совершенно иными свойствами. Обычно стабилизация при образовании молекулярных орбиталей тем больше, чем меньше разность энергий валентных состояний двух атомов. [c.158]

    Остановимся на схеме заполнения электронами молекулярных орбиталей кислорода (рис. А.40). Мы видим, что оба электрона на орбитали 2pяg в соответствии с правилом Хунда имеют параллельные спины. Это является причиной парамагнетизма кислорода (магнитные свойства веществ см. в разд. 6.5.3), который с трудом поддается объяснению с помощью других теорий строения. Парамагнетизм N0 также легко понять, если рассмотреть заполнение его молекулярных орбиталей электронами. Естественно, для молекулы, составленной из разных атомов, атомные волновые функции вступают в линейную комбинацию с различным весом . Весовые коэффициенты С1 и сг в линейной комбинации [c.98]


    Молекулярные орбитали воды образуются за счет перекрывания 25- и 2р-орбиталей атома кислорода и 1 -орбиталей двух атомов водорода. Всего образуется 6 валентных молекулярных орбиталей (число молекулярных орбиталей во внешнем слое молекулы равно сумме валентных атомных орбиталей составляющих ее атомов). [c.17]

    Молекулярная орбиталь г]з1 состоит из атомных орбиталей только двух атомов кислорода (ра) и водорода (5а),т. е. является двухцентровой, локализованной в области ядер О и Нд. Аналогично — двухцентровая молекулярная орбиталь, локализованная в области ядер О и Нд. [c.98]

    Графически молекулярные орбитали принято изображать в виде ячеек (как атомные орбитали) или черточек, расстояние между которыми по вертикали характеризует относительные энергетические уровни электронов. На примере молекул Нг и О2 систему молекулярных орбиталей и заполнение их электронами можно представить схемой (рис. 23). На схеме показаны исходные атомные орбитали изолированных атомов водорода (АОн) и кислорода (АОо), содержащие соответственно один (15 ) и шесть (25 2р ) электронов, а также результирующие молекулярные орбитали Нг и О2, содержащие два и двенадцать электронов. [c.68]

    Теперь ясно, что у/ состоит из атомных орбиталей только двух атомов, кислорода ( ) и водорода (.Уд), т.е. является двухцентровой, локализованной на связи О—Нд. Аналогично — двухцентровая молекулярная орбиталь,. локализованная на связи О— Н . Этот результат, полученный строгим путем унитарного преобразования, можно обобщать линейная комбинация двух независимых МО, многоцентровых, приводит к двум эквивалентным двухцентровым МО, причем общее распределение электронной плотности в молекуле (или функция Ф) остается неизменным. Поэтому можно сразу образовать из многоцентровых орбиталей /1 и 2 Две эквивалентные МО = VI + г и 2 = [c.194]

    Существование неспаренных электронов в молекуле кислорода можно понять с позиций метода молекулярных орбиталей. Этот метод исходит из того, что в поле ядер атомов, составляющих молекулу, имеются разрешенные состояния электронов, т. е. молекулярные орбитали, которые заполняются обобществленными электронами этих атомов. Молекулярные орбитали строятся путем линейных комбинаций атомных орбиталей. Отсюда название метода ЛКАО-МО. Комбинировать между собой могут атомные орбитали, энергии которых близ-ки. Поэтому наиболее простые случаи линейных комбинаций осуществляются в двухатомных молекулах.образованных одинаковыми атомами. [c.100]

    Наиболее длинноволновый максимум должен соответствовать переходу электрона с высшей заполненной атомной или молекулярной орбитали на низшую незаполненную орбиталь. В случае соединений с двухэлектронными связями электроны могут находиться на а- или я-орбиталях или в виде неподеленных пар электронов (/1-орбнтали). При этом наименьшей энергией обладают электроны на а-орбитали, затем электроны на я-орбитали (см. рис. 10). Вакантная разрыхляющая я -орбиталь находится ниже вакантной разрыхляющей о орбитали. Поэтому можно ожидать, что соединения, у которых все электроны внешнего электронного слоя участвуют в образовании а-связей, например насыщенные углеводороды, будут поглощать в дальней ультрафиолетовой области (так называемая вакуумная ультрафиолетовая область, где существенно поглощают кислород и азот, в связи с чем вся оптическая схема прибора должна находиться в вакууме). [c.36]

    Следует отметить, что для построения орбиталей (3) были взяты молекулярные орбитали 1 ] и 1/ 2. хотя вместо 1 1 могла быть использована орбиталь 20 либо некоторая линейная комбинация Ц] 1а] +1 .2 2я с фиксированными коэффициентами Х и Ц2. В любом из этих случаев далее возможно построить две эквивалентные орбитали типа г)) и Т12, которым будут отвечать и две гибридные орбитали и 2, составленные из атомных орбиталей кислорода. [c.352]

    Поскольку кислород более электроотрицателен, чем углерод, т, е, электроны сильнее связаны с кислородом, атомные орбитали кислорода вносят больший вклад в связывающие молекулярные орбитали СО (например, За, 1я), чем орбитали углерода. В разрыхляющие орбитали (например, 4а, 2л), наоборот, больший вклад вносят атомные орбитали атома углерода, а не кислорода. Это подтверждают трехмерные представления валентных орбиталей СО, приведенные на рис. 6.11. [c.124]

    Такой качественный вывод последовательности уровней, вообще говоря, оказывается невозможным для гетероядерных двухатомных молекул. Атомные орбитали одинакового типа, но принадлежащие двум химически различным атомам, имеют неодинаковые энергии. Их основные взаимодействия могут осуществляться с орбиталями иного типа на другом атоме, а не с орбиталями того же типа. Даже качественное обсуждение молекулярно-орбитальных энергетических уровней для таких молекул обычно требует обращения к методам, описанным в гл. 12. В очень редких случаях атомы молекулы обладают достаточно сходными свойствами, чтобы их молекулярно-орбитальные энергетические уровни удалось аппроксимировать изображенными на рис. 11.2. Наиболее примечательным примером таких молекул является СО. Несмотря на то что атомные орбитали кислорода по энергии расположены ниже, чем у углерода, возникающие молекулярные орбитали имеют энергетические уровни, расположение которых напоминает схему уровней гомоядерных двухатомных молекул. Электронная конфигурация молекулы СО совпадает с описанной выше для N2. И действительно, многие свойства СО близки к свойствам N2. В частности, энергия диссоциации СО лишь слегка превышает таковую для N2 ( 257 ккал/моль), и молекула имеет очень малый дипольный момент. [c.230]

    Метод ЭПР-спектроскопии был впервые применен для исследования облученного природного кварца Дж. Гриффитсом, Дж. Оуэном и Дж. Бардом в 1954 г. Они идентифицировали центры, получившие впоследствии название А1-центров дымчатой окраски и присутствующие во всех синтетических кристаллах кварца, содержащих структурную примесь алюминия. Наблюдаемый (при 7<]50 К) спектр ЭПР состоит из шести групп по шесть линий в каждой (магнитная кратность (/ а=6). Появление сверхтонкой шестикомпонентной структуры (СТС) обязано взаимодействию неспаренного спина с магнитным моментом ядра алюминия (спин ядра / = 5/2). На основе экспериментальных данных О Брайен в 1955 г. рассмотрела модель такого парамагнитного центра и провела расчет схемы его электронных уровней в рамках приближения молекулярных орбиталей — линейных комбинаций атомных орбит (МО ЛКАО). По этой модели центр представляет собой дырку , локализованную на кислородах дефектного тетраэдра, в котором ион кремния замещен ионом алюминия, а недостающий заряд компенсируется щелочным ионом (Na+Li+) или протоном (Н+), располагающимся в структурном канале вблизи такого тетраэдра. [c.53]

    Согласно качественным представлениям теории молекулярных орбиталей, перекрывание р-орбиталей атомов углерода и кислорода с образованием я-связи приводит к появлению 1) связывающей (я) молекулярной орбитали, которая близка по энергии атомной орбитали кислорода и в которой существует несимметричное распределение заряда между двумя атомами в пользу атома кислорода, и 2) разрыхляющей (я ) орбитали с более высокой энергией, которая близка по энергии атомной орбитали углерода. Существует множество теоретических работ, посвященных карбонильной группе, и ст, я-модель углерод-кислород-ной двойной связи не является единственным употребимым подходом. [c.490]

    Сопоставление полученных данных механизма образования валентных связей показывает, что наиболее легко образуются обобщенные молекулярные орбитали при взаимодействии атомного углерода и кислорода с незанятыми орбиталями. При этом [c.24]

    Пути превращений органических соединений успешно исследуются методом меченых атомов. В молекулу органического соединения вводят изотопы водорода (дейтерия, трития) или радиоактивные изотопы других элементов (кислорода, азота, серы, углерода), что дает возможность установить механизм реакции. В некоторых случаях этот метод, оказавший неоценимые услуги в биологии, является единственным, дающим однозначное суждение о течении химического процесса. Квантовомеханические методы, например метод молекулярных орбиталей (МО ЛКАО — молекулярные орбитали — линейная комбинация атомных орбиталей), позволяют рассчитывать молекулярные диаграммы органических соединений, включающие такие параметры, как порядок связей, индексы свободных валентностей, эффективные заряды на атомах, и оценивать способность молекул к химическим реакциям. [c.8]

    Заряды на атомах кислорода (—0,59 и —0,67) и электронная заселенность О—0-связи (0,38) незначительно меняются в зависимости от строения алкильного радикала, но введение заместителя в R оказывает большее влияние [81, 82]. Нижняя вакантная молекулярная орбиталь (НВО) проявляет разрыхляющий характер по отношению к 0 — 0-связи (имеет узел в области между атомами кислорода), в то время как верхняя занятая молекулярная орбиталь (ВЗО) меет несвязывающий характер и близка по характеру к кислородной атомной орбитали с неподеленной электронной парой. Склонность гидропероксида взаимодействовать по О—О-группе с нуклеофильными реагентами определяется энергетическим уровнем НВО молекулы гидропероксида (чем он ниже, тем меньше энергия активации процесса). Способность гидропероксида реагировать с электрофильными реагентами зависит от энергетического уровня ВЗО (чем он выше, тем легче протекает реакция). Энергия диссоциации для гидропероксида по связи 0 — 0 меньше, чем для пероксида водорода (200,5 кДж/моль) и составляет для гидропероксидов метила и этила 181,6 кДж/моль и для mpem-бутилгидропероксида 184,1 кДж/моль [58]. Такое незначительное изменение энергии диссоциации согласуется с небольшим изменением заселенности О—О-свяаи Ро—Ро (0,343—0,346) [82]. [c.223]

    Двухатомные молекулы с различными атома-м и. Молекулярные орбитали для молекул с различными атомами (N0, СО) строятся аналогично, если исходные атомы не очень сильно различаются по величинам потенциалов ионизации. На рис. 31 показана диаграмма образования молекулярных орбиталей и их заполнение электронами для молекулы СО. Энергии атомных орбиталей кислорода лежат ниже соответствующих орбиталей углерода, они расположены ближе к ядру, так как кислород имеет больший, чем углерод, потенциал ионизации. Имеющиеся в исходных атомах на внешних слоях 10 электронов заполняют связывающую и [c.118]

    Коулсон (1961) описывает молекулярные орбитали и их заселение электронами следующим образом. Два электрона занимают 1а-молекулярную орбиталь, образованную из 2х-орбитали кислорода и 2з- и 2рз--орбиталей углерода. Электроны связаны достаточно прочно ионизационный потенциал составляет 43 эв. Электронная плотность этой орбитали концентрируется между ядрами с некоторым смещением в сторону ядра кислорода. Имеются молекулярные 1лу- и 1лг-0рбитали, каждая из которых занята двумя электронами, построенные из атомных орбиталей и р углерода и кислорода. Для этих молекулярных орбиталей электронная плотность также максимальна вблизи атома кислорода. Ионизационный потенциал для этих электронов 16,6 эв. [c.64]

    В модели молекулярных орбиталей атомные 3d-, 4s- и Ар-орбитали металла взаимодействуют с а- и я-орбиталями атомов азота и кислорода. Хотя, строго говоря, эти комплексы имеют только симметрию Dzh, предполагается, что различие между атомами азота и кислорода невелико и эффективной симметрией является Dih. Взаимодействие орбиталей металла и лигандов приводит к возникновению молекулярных орбиталей, как показано на рис. 10-16. Поскольку неспаренный электрон, участвующий в ЭПР-переходе, находится на разрыхляющей орбитали и смещнваться эта орбиталь может также лишь с разрыхляющими орбиталями, мы ограничимся рассмотрением только таких орбиталей. Орбиталь Big является ст-разрыхляю-щей, B2I — плоской (ху) я-разрыхляющей, а орбитали E g — неплоскими я-разрыхляющими (рис. 10-16). Разрыхляющие орбитали, существенные для интерпретации спектра ЭПР [1], могут быть представлены в виде следующих уравнений  [c.380]

    Решение. В молекуле воды восемь валентных электронов шесть от атома кислорода (2х 2р ) и два от двух атомов водорода (по 1х). Молекулярные орбитали воды образуются за счет перекрывания 2 - и 2р-ор-биталей атома кислорода и 15-орбиталей двух атомов водорода. Всего образуется 6 валентных молекулярных орбиталей ( число молекулярных орбиталей во внешнем слое молекулы равно сумме валентных атомных орбиталей составляющих ее атомов). [c.46]

    Интересно, что тяжелые аналоги элементов-неметаллов — фосфор, сера, в отличие от азота и кислорода дающих локальные молекулы с кратными связями, образуют простые вещества, построенные за счет одинарных связей (например, одинарные связи Р—Р, 5—5 в молекулах Р4, 5в). Невыгодность образования кратных связей у фосфора, серы и их тяжелых аналогов объясняется уменьшением прочности таких связей по мере увеличения размеров атома (по сравнению с легкими аналогами). Это связано с уменьшением я-перекрывания орбиталей по мере роста их протяжснности, с увеличением электронного отталкивания при образовании кратных связей в условиях большого числа электронов. В то же время прочность одинарных связей неметалл—неметалл в группах при переходе от самых легких к более тяжелым элементам-аналогам увеличивается. Согласно современным данным [2] энергия одинарной связи О—О и N—N примерно на 100 ккал/моль меньше, чем энергия связи 5—5 и Р—Р соответственно. Однако возникающие при этом структуры отличаются от алмазоподобных и принадлежат к числу молекулярных. Это связано с несклонностью электронных оболочек атомов тяжелых неметаллов к 5р -гиб-ридизации (большое число электронных оболочек, удаленность наружных электронных слоев от атомного ядра). [c.249]

    Поскольку заряды ядер атомов азота и кислорода отличаются на единицу, существенного отличия в энергиях их атомных орбиталей не наблюдается и схема молекулярных орбиталей иона N0"" будет аналогична схеме молекулярных орбиталей молекулы азота (см. рис. 22а). Все орбитали атома кислорода по энергии расположены ниже, чем соответствующие атомные орбитали атома углерода, т.к. заряд ядра кислорода на две единицы больше. Результатом этих энергетических различий будет существенное отличие молекулярных орбиталей оксида углерода от молекулярных орбиталей иона N0 (см. рис. 226). 2 -орбиталь кислорода располагается значительно ниже 2 -орбитали углерода, следствием чего является их слабое взаимодействие, приводящее к образованию слабосвязывающей -орбитали, энергия которой практически не отличается от атомной 2 -орбитали кислорода. В то же время энергии 2/)-орбиталей кислорода и 2 -орбитали углерода близки. Эта близость приводит к образованию двух -связывающий и -разрыхляющей орбиталей. Если верхняя занятая -орбиталь в ионе N0"" обладает ярко выраженным связывающим характером, то в молекуле СО эта орбиталь является слаборазрыхляющей. Поэтому ион СО" имеет энергию диссоциации несколько большую, чем молекула СО. Образование других перечисленных выше молекул и ионов сомнительно, т. к. в них энергетические различия еще больше, чем у СО. [c.60]

    Если О < 0 < 0,5, то образуются я-молекулярные орбитали, которые заселяются электронами с несвязывающих атомных орбиталей комплексообразователя, что равносильно переносу электронной плотности от иона металла к лигандам. Такая связь обозначается символом я (М -> Ь) и называется обратной я-дативной связью. В образовании я-дативных связей могут принимать участие лиганды, у которых имеются подходящие по симметрии и энергии свободные орбитали, т. е. лиганды с электроноакцепторными свойствами, такие, как СО, СЫ , ароматические гетероциклические соединения, в особенности соединения с высокой степенью сопряжения и др. Для последнего из указанных типов лигандов наличие гетероатомов (азота, кислорода, серы) — необходимое условие для связывания металла в комплекс с активатором. Если в качестве комплексообра-зователя-катализатора выступает нейтральный аТом металла, то роль активатора могут играть сопряженные органические соединения, которые являются хорошими электроноакцепторами и в отсутствие гетероатома, например фенантрен, циклопентадиенил и др. [c.29]


Смотреть страницы где упоминается термин Кислород орбитали атомные и молекулярные: [c.523]    [c.95]    [c.77]    [c.95]    [c.191]    [c.127]    [c.27]    [c.352]    [c.353]    [c.36]    [c.53]    [c.179]    [c.305]    [c.305]    [c.40]    [c.11]    [c.169]    [c.510]   
Современная общая химия Том 3 (1975) -- [ c.0 ]

Современная общая химия (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный кислород

Кислород молекулярные орбитали

Кислород молекулярный

Молекулярные орбитали орбитали

Орбиталь атомная

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте