Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции положительно заряженных комплексов

    ОТ 2— до 1 +, а скорость возрастает только в два раза (очень незначительный эффект). Разрыв связи Р1 — С1 сильно затрудняется с увеличением положительного заряда комплекса, и образование новой связи становится более благоприятным. Незначительное влияние заряда комплекса на скорость реакции предполагает, что важны как образующаяся, так и разрывающаяся связи, и это характерно для 5л= 2-процесса. [c.178]


    В настоящее время известно очень мало примеров каталитических реакций, активируемых путем ослабления электростатического отталкивания. Одна из них —это реакция между персульфатом и иодидом, катализируемая Со(МНз)б [9]. Авторы считают, что сближение между реагентами в этой реакции сильно облегчается в результате образования внешнесферного комплекса. Аммиак, являющийся активатором, удерживает катализатор Со(1П) в форме устойчивого инертного комплекса, не позволяя ему восстанавливаться в ходе реакции, и тем самым сохраняет высокий положительный заряд комплекса, который способствует уменьшению электростатического отталкивания между ЗгО и Г. [c.61]

    В некоторых случаях существенного изменения энергии переходного состояния и скорости реакции можно добиться введением в комплекс лигандов, изменяющих его заряд. Так, если реакция замещения протекает по диссоциативному механизму, а уходящий лиганд заряжен отрицательно, введение в координационную сферу лигандов, уменьшающих общий положительный заряд комплекса, приведет к активированию. Характерные в этом отношении примеры, взятые из работы [36], приведены в табл. 2, где даны константы скорости реакций замещения ионов СГ и Вг" на НгО в комплексах Со(П1). [c.80]

    Таким образом, введение эфира в комплекс кобальта (III), имеющий заряд +2, ускоряет реакцию примерно в 100 раз. Этот эффект может быть объяснен электростатическим взаимодействием положительный заряд комплекса облегчает атаку гидроксильного иона. [c.366]

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]


    С многоатомными спиртами очень устойчивые комплексы образует, как известно, трехвалентное железо, ион которого при небольшом радиусе имеет большой положительный заряд этот же ион является лучшим сокатализатором реакции гидрогеиолиза. Трехвалентный ион алюминия также служит активным сокатализатором гидрогеиолиза (см. табл. 3.2), но уступает иону железа (III) ввиду слишком малого диаметра (так же, как и ион Mg  [c.92]

    Из всех возможных о-комплексов более энергетически выгодны те, в которых возникает возможность дополнительного рассредоточения положительного заряда за счет заместителя V. Энергия образования таких комплексов меньше, и поэтому реакция предпочтительно протекает через это промежуточное состояние. [c.327]

    Как было рассмотрено выше, при образовании а-комплекса в процессе взаимодействия бензола с электрофильными реагентами затрачивается энергия, равная разности энергий сопряжения бензола и диеновой системы (150—15=135 кДж/ /моль), без учета последующего выигрыша энергии, обусловленного рассредоточением положительного заряда. При взаимодействии нафталина с электрофильными реагентами, даже если не принимать во внимание энергию сопряжения оставшейся кратной связи с незатронутой ароматической системой соседнего кольца, энергетические затраты меньше (255—150 = = 105 кДж/моль). Поэтому нафталин более реакционноспособен, чем бензол. Атака электрофильного реагента в нафталине направляется преимущественно в а-положение, что можно объяснить динамическими факторами. Энергия активации реакции меньше в том случае, если при рассредоточении положительного заряда в о-комплексе не затрагивается ароматическая система второго кольца. При атаке электрофилом а-углеродного атома образуется о-комплекс, стабилизированный рассредоточением заряда без нарушения ароматической системы соседнего кольца. Напротив, при атаке р-углеродного атома рассредоточение положительного заряда сразу же повлечет за собой нарушение ароматической системы соседнего кольца и дополнительные энергетические затраты  [c.351]

    Существенное влияние на направление реакции сульфирования оказывает температура. Например, сульфирование нафталина при температурах до 60 С дает а-изомер, а при 120— 1бО°С — р-изомер. Если а-нафталинсульфокислоту нагреть с моногидратом до 160 °С, то из нее также получается -изомер. Как известно, а-положение в нафталине является более реакционноспособным, так как при образовании а-комплекса положительный заряд может рассредоточиться без нарушения ароматической структуры второго кольца. Поэтому при кинетическом контроле, т, е, при проведении реакции в ограниченное время и в мягких условиях, в преобладающих количествах образуется а-изомер. Обратная реакция — десульфирование — начинается с протонирования молекулы сульфокислоты  [c.365]

    В реакциях электрофильного замещения заместитель вступает в более реакционноспособное гетероциклическое кольцо, однако в отличие от пиррола электрофильная частица атакует не с -положение по отношению к группе NH, а р-положение. Это можно объяснить динамическими факторами, т. е. энергетической выгодностью образования а-комплекса. В том случае, если электрофильный реагент Х+ атакует -положение, то в образовавшемся а-комплексе (75) делокализация положительного заряда может произойти без нарушения ароматической системы бензольного кольца, энергия сопряжения которого 150 кДж/моль. Если электрофильный реагент атакует а-положение, то в образовавшемся о-комплексе (76) рассредоточение положительного заряда может осуществиться только с нарушением ароматической структуры бензольного кольца, что энергетически невыгодно. х х [c.531]

    Инертность пиридина в реакциях электрофильного замещения обусловлена и тем, что атом азота в нем обладает значительной основностью, так как его неподеленная пара электронов не участвует в образовании ароматической системы и не может рассредоточиться. Поэтому при действии протонных агентов (нитрование, сульфирование) он образует соли пиридиния (102), а с бромом — комплексы (103), в которых атом азота является донором электронов. Появление положительного заряда на атоме азота приводит к еще большей дезактивации ароматического кольца. [c.544]

    При этом электрофильная частица галогена (С1) образует с л-электронным облаком двойной связи неустойчивую систему — л-комплекс (I), за счет перекачки я-злектронной плотности на галоген, несущий частичный положительный заряд. Легкость протекания этой реакции возрастает с электроотрицательностью катиона На1+ в такой последовательности  [c.68]

    Реакция начинается с электрофильной атаки протоном л-элект-ронного облака одной из двойных связей. В результате образуется неустойчивый л-комплекс (I), который переходит затем в сопряженный карбониевый ион (II). л-Электроны соседней двойной связи в результате взаимодействия с положительным зарядом перемещаются в центр молекулы. Одновременно с этим положительный заряд переходит на крайний углеродный атом (III). Эта структура может перестраиваться в обратном направлении —в сторону (И). Структуры (II) и (III) называются граничными и применяются как способ изображения мезомерного карбкатиона. Атомы углерода С и С несущие положительный заряд, подвергаются затем нуклеофильной атаке со стороны аниона хлора с образованием продуктов 1,2- и 1,4-присоединения  [c.79]


    При атаке атома углерода, несущего частичный положительный заряд (вследствие поляризации связи С—X), реагентом 0Н начинает намечаться образование связи НО—С с одновременным ослаблением С—Х-связи. Реакция идет через переходное состояние (реакционный комплекс), в котором три атома водорода расположены в одной плоскости, перпендикулярной линии связи НО—С—X. При дальнейшем удалении галогена от углеродного атома и перехода его в ион Х группа ОН приближается к атому углерода настолько, что образует с ним обычную ковалентную связь. Весь процесс замещения осуществляется в одну стадию. Рассмотренный механизм реакции называется бимолекулярным нуклеофильным замещением и обозначается символом 5к2 (Ингольд). Скорость этой реакции пропорциональна концентрациям галогеналкила и нуклеофильного реагента  [c.94]

    Закономерности, которые относятся к реакционной способности октаэдрических комплексов, часто оказываются неприменимыми к комплексам с другим числом лигандов. Это объясняется тем, что скорость реакции зависит от механизма реакции,, который в свою очередь зависит от конфигурации комплекса. В реакциях с октаэдрическими комплексами скорость реакции и ее энергия активации определяются энергией разрыва связи комплексообразователь — лиганд. Поэтому малый радиус центрального иона и его высокий заряд обусловливают большую энергию связи и соответственно большую энергию активации и малую скорость реакции. Наоборот, в четырехкоординационных квадратных комплексах высокий заряд центрального атома способствует быстрому протеканию реакции. Это объясняется тем,, что реакция проходит не через стадию разрыва связи комплексообразователь— лиганд (как это имеет место в октаэдрических комплексах), а через стадию образования новой связи с увеличением координационного числа комплексообразователя. Большой положительный заряд комплексообразователя способствует образованию такой связи. [c.348]

    В этом комплексе электронная плотность карбонильной группы существенно оттянута к положительному заряду на ионе меди и тем самым повышен положительный заряд на атоме С. Это существенно облегчает его атаку неподеленной парой электронов нуклеофильного компонента реакции. [c.309]

    Большой положительный заряд центрального иона и комплекса и малый радиус центрального иона уменьшают скорость и увеличивают энергию активации при протекании реакции замещения по механизму О или а. Действительно, большая напряженность [c.388]

    Нуклеофильное замещение через промежуточное образование аринов обычно наблюдается только тогда, когда обычный механизм присоединения —отщепления с образованием анионных а-комплексов затруднен малой величиной положительного заряда на углеродном атоме, при котором стоит вытесняемый заместитель — галоген. Ариновый механизм при нуклеофильном замещении сульфогруппы не обнаружен, а указания на возможность кине-замещения сульфогруппы при ее нуклеофильном замещении, имеющиеся в старых работах, ошибочны. Образованию аринов благоприятствуют жесткие условия проведения реакции и высокая нуклеофильная активность реагента. [c.152]

    В возникшей промежуточной структуре (показанной в квадратных скобках, что символизирует переходный комплекс) валентность правого атома углерода полностью насыщена, а у левого атома углерода имеется только секстет электронов. Рассматриваемую переходную частицу, несущую положительный заряд, называют ионом карбония. Эта частица неустойчива и обладает большой реакционной способностью, так как ей необходим донор электронной пары, чтобы насытить ее валентные возможности. В рассматриваемом случае таким донором электронной пары оказывается хлорид-иоН, образуемый реагентом НС1, и поэтому между ионом карбония и хлорид-ионом возникает химическая связь. Окончательную стадию реакции можно представить себе следующим образом  [c.467]

    Величина положительного заряда иона металла служит важной характеристикой промотируемых или катализируемых металлами реакций [13]. Для многих процессов эффективность катализа непосредственно коррелирует с изменением заряда катиона. Так, как этот заряд распространяется на весь комплекс, а не только сосредоточен непосредственно на ионе металла, электростатическая природа координированных лигандов играет не менее важную роль, чем заряд иона металла. В некоторых рассмотренных выше реакциях активность многозарядного иона металла падала до нуля при комплексообразовании с анионными лигандами. Кроме того, плотность заряда может оказаться более важным фактором, чем общий заряд. Сила взаимодействия между двумя зарядами или диполями обратно пропорциональна квадрату расстояния между ними. Для достижения максимального. каталитического эффекта ион металла должен быть непосредственно связан с молекулой субстрата, а точнее — с разрываемой связью молекулы. Таким образом, важнейшую роль приобретает стереоспецифическая координация иона металла. В случае ионов переходных металлов на электростатическую природу иона оказывает также влияние экранирование заряда ядра иона металла его -электронами и полем лигандов. [c.233]

    Родственным +Л1-эффекту является а-эффект. Под ним понимают неподчинение нуклеофилов, таких как ЫНгОН, С10 , КС = Ы—О , ЫНг—N1 2 и Н00 , уравнению Эдвардса. Они реагируют быстрее, особенно это относится к гидропероксид-аниону. Сравнение активированных комплексов для реакции 5л 2 с аммиаком и гидразином показывает, что во втором случае частичный положительный заряд делокализуется [c.181]

    Аналогично пирокатехину 8-оксихинолин практически не сочетается с диазобензолсульфокислотой в минеральнокислой среде, но это сочетание происходит, если 8-оксихинолин связан в медный комплекс. Однако комплексообразование не с любым металлом облегчает реакцию азосочетания. Взаимодействие того же 8-оксихинолина с диазобензолдисульфокислотой замедляется солями алюминия, В присутствии солей алюминия эта реакция протекает очень медленно, даже при наличии ацетата 1атрия, Кузнецов связывает это с различием природы связей О—Си и О—А1. Однако, может быть, причина столь резкого различия кроется в более высоком заряде алюминиевого комплекса по сравнению с медным. Более высокий положительный заряд комплекса должен затруднять атаку координированной молекулы 8-оксихинолина диазониевым катионом. [c.369]

    Сведения о механизме замещения иногда могут быть получены из данных о влиянии заряда комплекса на скорости его реакций. Так, например, ссли реакция идет прежде всего с распределением зарядов, как это имеет место при диссоциативных процессах, то, следовательно, для близкой серии аналогичных комплексов скорость снижается с уменьшением заряда комплекса. Однако если реакции в основном ассоциативного типа, то процесс нейтрализации зарядов требует, чтобы повышение положительного заряда комплекса сопровождалось повьппение.м скорости реакции. Для бимолекулярного процесса замещения, когда диссоциация и нейтрализация приблизительно одинаково важны, происходит наложение противоположных эффектов и скорости реакций значительно не меняются с изменением заряда кодшлекса. [c.336]

    Большее притяжение высокого положительного заряда центрального иона к отрицательному заряду лигандов проявляется в уменьшении способности лигандов координационного комплекса связываться с другими катионами. В ряду VO , Ст01 и МпО ванадат-ион представляет собой очень сильное основание и способен связываться с протоном Н + или другими катионами. Хромат-ион также является довольно сильным основанием. Однако перманганат-ион-слабое основание соединение НМпО полностью ионизуется в воде, и поэтому кислота НМпО представляет собой одну из наиболее сильных известных кислот (см. табл. 11-2). Ванадат-ион легко вступает в реакции типа [c.216]

    Образование комплексов между реагирующими молекулами может значительно облегчить взаимодействие между ними, ориен-1ируя их в удобном для протекания химической реакции положении. Кроме того, в ряде случаев комплексообразование сильно изменяет химические свойства молекул. Так, гидрат фтористого бора является кислотой, значительно более сильной, чем входящая в ето состав молекула воды. Оттягивание одной пары электронов атома кислорода к атому бора приводит к появлению у атома кис-Jюpoдa положительного заряда, что значительно облегчает отщепление протона. [c.35]

    На основании приведенных выше примеров реакций можно утверждать, что еще до взаимодействия с ароматическим субстратом входящий в ионную пару неустойчивый первичный карбокатиои (72) в результате гидридного сдвига может перегруппироваться в более устойчивый, термодинамически более выгодный карбокатион (73) с положительным зарядом на вторичном атоме углерода, а карбокатион (73) затем образует а-комплекс с субстратом. [c.381]

    Наконец, при реакции меченого р-фенилэтиламина (35) в первоначально образовавшемся карбокатионе (46) в рассредоточении положительного заряда могут участвовать я-электроны бензольного кольца с промежуточным образованием феноние-вого катиона (47), имеющего строение о-комплекса, в котором молекула воды может равновероятно атаковать как меченый, так и немеченый атомы углерода боковой цепи  [c.431]

    И, наконец, п-диметоксибензол (IX), не содержащий нуклеофильных групп, способных катализировать сольволиз ангидрида (VII) по нуклеофильному или общеосновному механизмам, ингибирует реакцию вследствие образования КПЗ с константой устойчивости 1,1 М" . Вероятные причины этого — стерические затруднения для взаимодействия метанола с реакционным центром в молекуле ангидрида (VII), находящейся в комплексе, а также уменьшение эффективного положительного заряда на карбонильном углероде в сольволизуемой молекуле (VII) при переносе электрона от донора (IX). (Аналогичный пример, показывающий общность данного явления, — это ингибирование [c.77]

    В отличие от пиррола действие электрофильных заместителей в л о-лекуле индола направлено в р-, а не в а-положение. По-видимому, в этом случае образуется энергетически более выгодный а-комплекс с локализацией положительного заряда в а-положении к атому азота. Например, реакция Манниха  [c.319]

    Дальнейшие доказательства в пользу того, что замещающими агентами являются галоген-катионы или комплексы, содержащие поляризованный галоген, были получены при изучении реакций между межгалогенидными и ароматическими соединениями. Так, например, действие Br I приводит только к броми-рованию, а I I — только к иодированию, т. е. в молекулу ароматического соединения всегда вводится менее электроотрицательный галоген, который в исходной молекуле межгалогенидного соединения несет на себе частичный положительный заряд, например  [c.145]

    Этот л-комплекс называют локальным, подчеркивая этим, что алкильный катион не может свободно перемещаться в облаке я-электроиов бензольного кольца. Он может находиться только в электронном облаке между углеродным атомом, с которым он был первоначально соединен, и смежным углеродом. При сбоих возможных механизмах мигрирующая группа несет положительный заряд. Эти механизмы были предложены на основании исследований кинетики реакций, показавших, что в присутствии бромистого алюминия — бромистого водорода скорость изомеризации снижается в последовательности п-изопропилтолуол > п-этилтолуол > /г-ксилол, т. е. в той же последовательности, в которой снижается стабильность карбоний-ионов нзопропильный > этильньш > метильный. [c.107]

    Примером влияния растворителя на ароматическое электро-фильное замещение может служить ЗнАг-реакция азосочетания между тетрафторборатом 4-нитрофенилдиазония и М,М-диме-тиланилином [уравнение (5.27)] [504]. В соответствии с двухстадийным механизмом с участием промежуточного арениевого иона образование активированного комплекса на первой определяющей скорость стадии связано с делокализацией положительного заряда. Следовательно, повышение полярности растворителя должно приводить к замедлению реакции. [c.219]

    Любая группа, оттягивающая электроны из ароматической циклической системы, приводит к снижению скорости реакции с электрофилом, и наоборот (рис. 2.5.4). Аналогично, группа, которая способна делокализовать положительный заряд кольца в ст-комп-лексе, способствует понижению свободной энергии образования ст-комплекса, и наоборот (рис. 2.5.5). Таким образом, хотя атом хлора в хлорбензоле проявляет полярный эффект, который понижает электронную плотность в кольце и, следовательно, уменьшает скорость реакции по сравнению с бензолом, при атаке электрофила в орто- или пара-положение (резонансные вклады структур 89 и 90) положительный заряд все же может эффективно делокализо-ваться. Делокализация положительного заряда при атаке мета-положения требует структуры (91) с высокой энергией, вклад которой недостаточен, чтобы обеспечить ее устойчивость. [c.383]

    Известен ряд перхлорированных карбениевых ионов [схемы 33) —(103)1 и некоторые из них удивительно устойчивы, что сви-гельствует о способности хлора стабилизовать расположенный дом положительный заряд на углероде 82]. При реакции гекса-орциклонентадиена с сильными кислотами Льюиса образуется к называемый димер Принса (32), хотя при использовании орида алюминия можно выделить промежуточно образующийся асный комплекс (31). Этот комплекс, по-видимому, не является иным антиароматическим катионом (33), хотя данные ЭПР-спек- скопии указывают на возможность генерации такого катиона растворе ЗЬСЬ, где он существует в основном триплетно зянии. [c.667]

    Реакция ионов гидроксония с фторид-ионами протекает несколько быстрее, чем реакция ионов гидроксония с гидросульфид-ионами. Небольшое различие в наблюдаемых скоростях в этом случае может быть обусловлено действием чисто статистических факторов, поскольку фторид-ион располагает четырьмя парами электронов, способными присоединять протон, тогда как в гидросульфид-ионе таких пар только три. Электростатические взаимодействия оказывают лишь слабое влияние на константу скорости, что, по-видимому, связано с высокой диэлектрической проницаемостью воды, выполняющей здесь роль растворителя. В грубом приближении можно считать, что константа скорости переноса протона от иона гидроксония уменьшается в два раза при введении в молекулу каждого дополнительного положительного заряда, если размер молекулы при этом не изменяется. Так, например, реакции иона гидроксония с комплексами ионов металлов различного заряда характеризуются следующими значениями константы скорости [л/(моль-с)] для Н0Си(Н20)5+ 10 , для НОСо(ЫНз)5 + 5-10 и для НМНР1(еп)2 + l,9 10 . [c.26]


Смотреть страницы где упоминается термин Реакции положительно заряженных комплексов: [c.183]    [c.178]    [c.271]    [c.77]    [c.100]    [c.51]    [c.282]    [c.74]    [c.353]    [c.1052]    [c.39]    [c.26]    [c.82]    [c.257]   
Смотреть главы в:

Равновесие и кинетика электродных реакций комплексов металлов -> Реакции положительно заряженных комплексов




ПОИСК





Смотрите так же термины и статьи:

Заряд положительный

Комплекса заряд



© 2025 chem21.info Реклама на сайте