Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное замещение тиофена

    Фуран, пиррол и тиофен вступают в реакции электрофильного замещения с большей легкостью, чем бензол, тогда как пиридин и хинолин вступают в эти реакции труднее бензола. По сравнительной легкости, с которой эти гетероциклические -соединения и бензол вступают в указанный тип реакций (нитрование, сульфирование, галоидирование),, их можно расположить в следующий ряд, в котором слева от бензола располагаются соединения, обладающие большей ароматичностью и легче, чем бензол, вступающие в эти реакции, а справа—соединения, вступающие в них труднее бензола  [c.56]


    Расположите в порядке возрастания реакционной способности в условиях электрофильного замещения бензол, нафталин, тиофен, пиридин. Напишите реакции бромирования каждого соединения. Укажите условия их проведения. [c.211]

    Расположите по возрастанию легкости вступления в реакции электрофильного замещения следующие соединения а) пиррол 6) бензол в) тиофен г) фуран. [c.137]

Таблица 19.1.4. Электрофильное замещение тиофенов, Таблица 19.1.4. <a href="/info/1016">Электрофильное замещение</a> тиофенов,
    Таким образом, гетероциклические соединения, подобно бензолу и его производным, склонны в большей степени к реакциям замещения. По легкости, с которой фуран, пиррол и тиофен вступают в реакции электрофильного замещения, их можно расположить в ряд (сравнивая при этом с бензолом и шестичленными гетероциклами)  [c.355]

    Простейшие ароматические гетероциклы. Пятичленные гетероциклы с одним, гетероатомом. Относящиеся к этому типу ароматические соединения, например фуран, пиррол и тиофен, намного активнее бензола в реакциях электрофильного замещения (особенно фуран и пиррол). Как уже отмечалось в разд. 5.1, эти гетероциклы имеют дипольные моменты (0,7, 1,8 и 0,55 Д соответственно). [c.352]

    Поведение простейших пятичленных и шестичленных гетероциклических соединений, обладающих ароматическими свойствами—фурана, пиррола, тиофена и соответственно пиридина и хинолина, в реакции галоидирования, подобно их поведению в других реакциях электрофильного замещения (в реакциях нитрования и сульфирования — см. стр. 56 и 111) фуран, пиррол и тиофен галоидируются легче бензола, тогда как пиридин и хинолин галоидируются труднее бензола. [c.185]

    Меркурирование и металлирование тиофена протекает также в положение 2. Таким образом, для тиофенов можно осуществить типичные реакции электрофильного замещения, как и для соединений бензольного ряда. Однако по сравнению с бензолом, тиофен обнаруживает большую реакцион 1ую способность ДЯ+ более низко, так как меньше. [c.559]

    Охарактеризуйте отношение фурана, пиррола и тиофена к действию электрофильных реагентов. Приведите механизм реакции электрофильного замещения в общем виде. Сравните устойчивость карбкатионов (ст-комплексов), образующихся при атаке электрофила (Е+) в положения 2 и 3. Сделайте вывод о преимущественном направлении этих реакций. С какими соединениями бензольного ряда можно сравнить фуран, пиррол и тиофен по их способности вступать в реакции электрофильного замещения  [c.205]


    Чрезвычайно важное значение для синтеза различных производных пиррола, тиофена и фурана имеют реакции депротонирования. Фуран и тиофен депротонируются такими сильными основаниями, как -бутиллитий и диизопропиламид лития, и при этом образуется а-анион, поскольку атом водорода в этом положении обладает подвижностью вследствие индуктивного электроно-акцепторного влияния гетероатома. Полученный таким образом анион способен реагировать с самыми разнообразными электрофилами с образованием а-замещенных фуранов и тиофенов. Эта методология существенно расширяет возможность использования процессов электрофильного замещения в синтезе различных производных фуранов и тиофенов, поскольку позволяет получать исключительно а-замещенные соединения, а также использовать даже слабые электрофильные реагенты. Использование металлированных Ы-замещенных пирролов также обеспечивает ценный синтетический подход к различным а-за-мещенным пирролам. При отсутствии заместителя при атоме азота депротонирование пиррола приводит к пиррил-аниону, который обладает нуклеофильными свойствами, и при его взаимодействии с электрофильными реагентами образуются производные индола, замещенные по атому азота. [c.307]

    Химические свойства. Вследствие того, что электроотрицательности серы и углерода равны, тиофен по химическим свойствам ближе к бензолу, чем другие пятичленные гетероциклические соединения. Однако из-за несколько меньшей энергии сопряжения и большей насыщенности диеновой части молекулы электронной плотностью способность тиофена к реакциям электрофильного замещения несколько выше, чем у бензола. [c.517]

    Распределение я-электронной плотности в молекуле пиррола также неравномерно. Эта плотность выше в а (а )-положении. Поэтому при реакции электрофильного замещения, которая у пиррола протекает значительно легче, чем у бензола, реагенты становятся в эти положения. По реакционной способности пиррол находится между фураном и тиофеном  [c.362]

    Химические свойства. Подобно бензолу фуран, пиррол и тиофен вступают в реакции электрофильного замещения. При этом замещается водород, находящийся в соседнем положении с гетероатомом (а-положение). Как правило, в этих случаях необходимы мягкие специфические реагенты, например  [c.312]

    Приведенные ниже реакции электрофильного замещения характерны не только для самого бензола, но и для его моно- и дизамещенных, конденсированных ароматических систем (нафталин, антрацен), а также для гетероароматических соединений (фуран, пиррол, тиофен, пиридин и др.). [c.355]

    Простейшие пятичленные гетероциклические соединения, обладаюш,ие ароматическими свойствами—фуран, пиррол и тиофен,—сульфируются легче бензола, тогда как шестичленные гетероциклы—пиридин и хинолин—сульфируются труднее бензола, т. е. относятся к этой реакции электрофильного замещения так же, как и к рассмотренной выше (стр. 56—62) реакции нитрования. [c.111]

Таблица 19.1.5. Электрофильное замещение 3-замещенных тиофенов Таблица 19.1.5. <a href="/info/1016">Электрофильное замещение</a> 3-замещенных тиофенов
    При электрофильном замещении тиофен значительно более реакционноспособен, чем бензол (для разных реакций — в 600— 100 000 раз, см. табл. 19.1.2), хотя большая часть реакций в обоих случаях протекает по одинаковому механизму. Бензол часто удобно использовать как растворитель. Реакционная способность при [c.235]

    Физические свойства Фуран, тиофен, пиррол представляют собой жидкости, плохо растворимые в воде Химические свойства Подобно бензолу фуран, пир рол и тиофен вступают в реакции электрофильного замещения При этом замещается водород, находящийся в соседнем положении с гетероатомом (а-положение) Как правило, в этих случаях необходимы мягкие специфические реагенты, например [c.312]

    По реакционной способности в реакциях электрофильного замещения тиофен является промежуточным между бензолом и фураном. В каких условиях протекает хлорирование, сульфирование и ацилирование тиофена  [c.239]

    Фуран, пиррол и тиофен в реакции электрофильного замещения вступают легче, чем бензол, однако фуран и пиррол (но не тиофен) для проведения этих реакций требуют использования специальных модифицированных электрофильных реагентов (ацетилнитрат, пиридинсульфотриоксид и др.). Объясните этот факт. Приведите реакции фурана и пиррола с указанными реагентами. [c.205]

    Электрофильное замещение в пирроле, фуране и тиофене. Реакционная способность и ориентация [c.1019]

    В ряду тиофена условия реакции оказывают большее влияние на электрофильное замещение, чем в ряду бензола. В случае тиофенов выбор реагентов и условий реакции более широк, но есть и специфические трудности, связанные с получением замещенных. [c.237]

    Для того чтобы предвидеть ориентацию, в идеальном случае следовало бы рассмотреть энергии переходных состояний, ведущих к различным образом замещенным тиофенам. Обоснованными моделями переходных состояний для электрофильного замещения тиофеновых соединений могут служить интермедиаты Уэланда (о-комплексы) (схемы 3, 4). Их рассмотрение показывает, что степень делокализации заряда в о-комплексе, ведущем к -замещению (схема 3), больше, чем в интермедиате -замещения (схема 4) это объясняет преимущественное протекание первого направления реакции [29]. [c.237]


    В реакциях электрофильного замещения тиофен меиее акти-), чем пиррол и фуран, и гораздо более стоек к действию мине-пьны кислот. Так, тиофен сульфируется непосредственно сер-я кислотой с образованием тиофеи-2-сульфокислоты легко груется, давая 2-нитротиофен ацилируется в присутствии лот Льюиса, что ведет к получению кетонов тиофенового да (а-тненилкетонов, см. 5.3.3). [c.285]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    При изучении химических превращений тиофенов следует учитывать, что во многих случаях гетероатом серы и группа —СН=СН— бензольного кольца идентичны по химическому поведению. Гетероатом дополняет л-электронную систему до ароматического секстета, а также определяет направленность замещения в тиофе-новом кольце а-положения на несколько порядков активнее р-положений. Наиболее важны для тиофенов реакции электрофильного замещения и металлирования, дающие начало процессам получения многочисленных важных продуктов алифатиче- [c.252]

    Ввиду того, что р-электроны атома кислорода в фуране в меньшей степени, чем р-электроны атомов азота и серы в пирроле и тиофене, сопряжены с л-электронами диеновой системы, некоторые из реакций электрофильного замещения протекают своеобразно, через стадию промежуточного образовайия продукта 1,4-присоединения, например  [c.512]

    Такие гетероциклические соединения, как фуран, тиофен и пиррол, вступают в реакции электрофильного замещения с большей легкостью, чем бензол. Фуран и его производные нитруются смесью азотной кислоты с уксусным ангидридом, образуя продукты присоединения ионов N0 и СНдСОО в положения 2,5 (а,а -нитроацетаты). Нитроацетаты при действии пиридина легко отщепляют уксусную кислоту, превращаясь в а-нитрофуран или его производные. [c.91]

    Однако и гетероатомы, входящие в состав цикла, оказывают влияние на свойства гетероциклических соединений. В некоторых гетероциклах в отличие от ароматических соединений наблюдается неравномерное распределение я-электронной плотности в молекуле. Например, в пятичленных гетероциклах (в фуране, тиофене и пирроле) плотность смещена от гетероатома в сторону кольца и будет наибольшей в а-положениях. Это приводит к тому, что в этих положениях наиболее легко идет процесс электрофильного замещения (5е)  [c.355]

    Пяти- и щестичленные гетероциклические соединения содержат замкнутую систему из шести л-электронов. Для пятичленных гетероциклов эта система состоит из четырех я-электронов двух двойных связей цикла и однбй электронной пары гетероатома (О, N. 8). В шестичленных гетероциклах в сопряжении участвуют шесть л-электронов трех двойных связей. Поэтому гетероциклические соединения, подобно бензолу и его производным, склонны в большей степени к реакциям замещения. По легкости, с которой фуран, тиофен, пиррол и пиридин вступают в реакции электрофильного замещения, их можно расположить в ряд (сравнивая с бензолом)  [c.107]

    Высокая ароматичность в химическом понимании, т. е. склонность к реакциям электрофильного замещения в ядрк гетероциклических аналогов циклопентадиенильного аниона (XVII) (фуран, тиофен, пиррол, селенофен, теллурофен), объясняется тем, что 2р.- [c.268]

    В реаедиях электрофильного замещения 1,3-азолов по углеродным атомам далеко не все еще ясно. Несомненно, однако, что по реакционноспособности 1,3-азолы занимают промежуточное положение между пиридином и шестичленными гетероциклами — пирролом, фураном и тиофеном. Не описано, например, ни одного случая С-ацилирования 1,3-азолов (даже в присутствии кислот Льюиса), тогда как нитрование имидазола и 4-метилтиазола идет без затруднений. [c.333]

    Результат реакции существенным образом зависит от активности ароматического соединения в условиях электрофильного замещения. Так, при проведении реакции со смесью 2-хлортиофена и бензола, несмотря на пятикратный избыток последнего, обнаружены лишь следы 2-фенилтиофена, а практически единственным продуктом является 5-хлор-2,2 -битиофен, выделенный с выходом 44% [13], иначе говоря, 2-хлортиофен является не только источником электрофильного агента, но также выполняет роль субстрата. Более активные ароматические соединения успешно конкурируют с 2-хлортиофеном, так что, например, экви-молярные смеси последнего с 2,4-диметоксибензолом или 1-метоксинафталином в аналогичных условиях превращаются в 2-(2,4-диметоксифенил)тиофен (8, А1- = 2,4-(МеО)2СбНз) и 2-(4-метокси-1-нафтил)тиофен (8, Аг = а-(4-МеОСюНб)) в качестве практически единственных продуктов с выходами 55 и 83%) соответственно [13]. [c.30]

    Сходная ситуация имеет место и для электрофильного замещения замещенных тиофенов (схемы 5—8), однако дополнительным фактором является стабилизирующее или дестабилизирующее влияние имеющегося заместителя на делокализованный о-комплекс. Например, для 2-замещенных из четырех возможных направлений атаки (исключая атом серы, см. разд. 19.1.5.5) предпочтительным для -f/-, —/-f Ai-заместителей (R = Me, l, Br, OMe, NHA и др.) является, очевидно, то, которое приводит к замещению свободного а-положения (схема 5), поскольку указанные заместители благодаря мезомерному эффекту дополнительно стабилизируют положительный заряд (ср. табл. 19.1.3). Такая дополнительная стабилизация невозможна при атаке положения 4 (схема 6) и менее эффективна в случае атаки положения 3 (схема 7). Хорощие условия делокализации заряда создаются, однако, при ыгасо-атаке (схема 8), что делает ее привлекательной альтернативой р-замещения. Сопряжение —I — Ai-заместителей с заряженным циклом (схемы 5 и 7) приводит к дестабилизации о-комплек-са и увеличивает возможность образования 4-замещенных (схема 6). [c.238]

    Тиофен С4Н48 по ароматичности близок к бензолу. Для него характерны все реакции электрофильного замещения вплоть до сульфирования серной кислотой  [c.681]

    Тиазол чрезвычайно напоминает по свойствам пиридин имеет его запах и близкую температуру кипения (у тиазола /, , = 117 °С, у пиридина / = 115,6 °С). Оба гетероцикла растворяются в воде, являются слабыми хромофорами. Как и пиридин, тиазол очень устойчив к окислению, даже такими сильными окислителями, как перманганат в горячей концентрированной H2SO4. Тиазол сильно уступает бензолу в- реакциях электрофильного замещения. Он нитруется в жестких условиях в положение 5, которое наиболее благоприятно по отношению к атому S (ориентирует в а-положение, как в тиофене) и к атому азота (ориентирует в -положение, как в пиридине). Олеум при 200 °С также сульфирует тиазол в положение 5. Все это означает, что в цикле находится очень существенный положительный заряд, а отрицательный — на атоме N. [c.696]

    В гл. 2 рассмотрена реакционная способность, в целом класса гетероциклических соединений. Разделы этой главы можно читать при изучении реакций электрофильного замещения, скажем, в тиофене в то же время гл. 2 можно изучать всю сразу, не откладывая там подробно обсуждаются радикальные реакции замещения, реакции металлирования и реакции, катализируемые палладием. Роль этих поцессов в химии гетероциклических соединений существенно возросла с момента опубликования третьего издания. Следует также отметить, что в учебниках по общей органической химии таким процесса уделено относительно мало внимания. [c.11]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Вследствие высокой стабильности тиофенов в их реакциях электрофильного замещения могут быть успешно использованы комбинащ1и ряда реагентов с сильными кислотами, обычно приводящие к кислотно-катализируемому разложению и полимеризации фуранов и пирролов. [c.353]

    Электрофильное замещение в бензо[й] тиофенах и бензо[й]фуранах проходит гораздо менее региоселективно, чем в индоле (особенно это касается селективности атаки по положению 3), и атомы углерода гетероцикла обладают лишь не- [c.479]

    Азолы по легкости, с которой они вступают в реакции электрофильного замещения, занимают промежуточное положение между пиридинами, с одной стороны, и пирролами, тиофенами и фуранами, с другой наличие элекгроноак-цепторной иминной группы оказывает влияние на пятичленные ароматические гетероциклы такое же, как и в шестичленных ароматических структурах (т. е. такое же, как при сравнении бензола с пиридином, гл. 4). Порядок реакционной способности пиррол > фуран > тиофен справедлив и для азолов, хотя наличие основного атома азота усложняет такое сравнение. Региоориентация электрофильной атаки становится более ясной при сравнении характера различных положений цикла активированного в пятичленных циклах и дезактивированного подобно а- и у-положениям в пиридине. [c.504]


Смотреть страницы где упоминается термин Электрофильное замещение тиофена: [c.122]    [c.510]    [c.393]    [c.241]    [c.260]    [c.677]    [c.532]   
Органическая химия (1964) -- [ c.496 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение электрофильное

Тиофен

Тиофен электрофильные

Электрофильность



© 2025 chem21.info Реклама на сайте