Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилены высшие

    Ацетилен получают разложением карбида кальция водой в ацетиленовых генераторах. При методе вода на Карбид разложение проводят в генераторах, в которые воду подают на движущийся по полкам карбид, а из аппарата выводят известь-пушонку. При методе карбид в воду карбид подают в избыток воды, а известь выводят в виде шламовых вод. Ацетилен из карбида кальция получается высокой концентрации с незначительным кО личеством примесей (НгЗ, РНз, ННз), от которых ацетилен очищают раствором щелочи, серной кислотой или гипохлоритом натрия. Влажный или осушенный ацетилен (в зависимости от потребителя) направляют на дальнейшую переработку или в баллоны. [c.25]


    Разделение воздуха осуществляют главным образом глубоким охлаждением, сжижением и последующей ректификацией. Готовой продукцией воздухоразделительных установок являются газообразные и жидкие кислород и азот. На установках высокого давления кроме кислорода получают аргон и неоногелиевую смесь. Жидкий кислород представляет собой прозрачную голубоват/ю быстро испаряющуюся при комнатной температуре жидкость. При испарении 1 л жидкого кислорода при 20 °С и нормальном давлении образуется 860 л газообразного кислорода. Горючие газы (водород, ацетилен, метан и др.) образуют с кислородом взрывчатые смеси. Смазочные масла, а также их пары, при соприкосновении с чистым кислородом способны к самовоспламенению со взрывом. [c.121]

    На стр. 217 была описана технология производства ацетилена карбидным способом. Этим методом получают ацетилен высокой концентрации с небольшим количеством примесей. Недостатком метода является громоздкость установок и большой расход сырья и энергии. В настоящее время более перспективными являются методы производства ацетилена из углеводородов — метана, этана, пропана, бутана и их смесей, в качестве которых могут быть использованы природный газ и жидкие нефтяные фракции. [c.273]

    Описание процесса (рис. 21). При пиролизе легкого бензина получают высокие выходы газа, содержащего ацетилен и этилен если требуется, из газа пиролиза можно извлечь ацетилен высокой чистоты. [c.44]

    Ацетилен высокой чистоты. . Бутадиен. ......... [c.578]

    Из таких углеводородов, как метап, этан и пропан, содержащихся в отходяш их газах гидрирования угля или в природном газе пиролизом при очень высоких температурах можно получить ацетилен. Проблема подвода большого количества тепла, необходимого для эндотермического процесса пиролиза, может решаться различными способами. Превращение метапа согласно уравнению [c.94]

    Одним из видов сравнительно дешевого сырья в промышленности органического синтеза является ацетилен. Высокая реакционная способность позволяет использовать его для синтеза различных веществ, при переработке которых можно получать, например, поливинилхлорид, пер хлор виниловую смолу, синтетический хлоропре-новый каучук, химические волокна и пленки типа саран и винол , различные хлорорганические растворители, три- и перхлорэтилен и другие продукты. [c.9]


    Широко распространен прямой синтез акрилонитрила и синильной кислоты и ацетилена , однако для его осуществления требуется ацетилен высокой чистоты. [c.147]

    В целях предотвращения гидролиза к катализатору добавляют H I. Слабокислая среда облегчает образование медноаммиачного комплекса с ацетиленом высокое содержание НС1 в катализаторном растворе влечет за собой увеличение выхода винилхлорида и ацетальдегида и частичный переход образовавшегося винилацетилена в хлоропрен. Катализатор должен иметь pH не менее 6. Наиболее выгодным является содержание 0,4 вес.% НС1. Добавка НС1 сверх этой концентрации снижает скорость реакции и выход винилацетилена. При pH < 2 скорость реакции образования винилхлорида выше скорости димеризации ацетилена. [c.174]

    Синтезируя сложные молекулы нужных веществ, химики предпочитают прежде всего в качестве исходных использовать простые, дешевые и доступные соединения. Ацетилен является одним из важнейших исходных материалов в химии. Благодаря высокой активности его тройной связи он легко вступает в реакции с множеством соединений, поэтому-то он и полезен как сырье. [c.50]

    Легкие фракции, состоящие из углеводородов до Сг, из колонны 3 при давлении до 3 МПа с температурой минус 45 °С дополнительно охлаждаются в теплообменнике до минус 100 °С. В качестве хладоагентов используют метано-родородную, этановую и этиленовую фракции. В этих условиях этиленовая фракция полностью конденсируется. В колонне 5 выделяется метано-водородная фракция прп температуре верха колонны минус 120 °С и низа минус 90 °С и давлении 0,2— 0,25 МПа. Этан-этиленовая фракция разделяется в колонне 6 с получением этиленовой фракции высокой степени чистоты. При температуре верха от минус 93 до минус 97 °С и низа от минус 77 до минус 84 °С и давлении 0,17 МПа. Этановая фракция поступает в абсорбер, где из нее при минус 60 °С удаляется ацетилен. [c.297]

    Основными опасностями процесса хлорирования являются высокая экзотермичность реакций и активность хлора при взаимодействии с ацетиленом и другими непредельными углеводородами. Известны многочисленные аварии, вызванные случайным смешением ацетилена с хлором. При этом активное присоединение хлора по ненасыщенным связям и сильный разогрев среды инциировали-взрывной распад ацетилена. В ряде случаев аварии сопровождались разрушением технологического оборудования и хранилищ хлора. [c.349]

    Этилен — горючий, бесцветный газ относительная плотность по воздуху 0,974, с воздухом образует взрывоопасные смеси. Область воспламенения 3—32% (об.). Устойчив приблизительно до 350°С. Выше этой температуры начинает разлагаться на метан и ацетилен. При более высоких температурах этилен разлагается на ацетилен и водород. [c.80]

    Основные опасности при эксплуатации кислородных баллонов обусловлены возможностью их взрыва при неблагоприятных обстоятельствах, связанных с утечкой кислорода или попаданием в баллоны органических примесей. В практике отмечались случаи разрушения баллонов вследствие попадания в них горючих газов. Загрязнение баллона горючим газом даже в незначительном количестве представляет большую опасность. Такие случаи происходили при ошибочном использовании пустого кислородного баллона (в отсутствие давления газа внутри) для ведения автогенных работ. В результате горючий газ (ацетилен, пропан, бутан и др.), имея более высокое давление, через автогенную горелку проникал в кислородный баллон. Подобные случаи возможны при ведении автогенных работ с неисправными редукторами, горелками или вентилями, когда давление горючего газа превышает установленные пределы и создаются условия проникновения этого газа в кислородный баллон. [c.378]

    Высокой температуры, необходимой для достаточного смещения равновесия этой реакции вправо ( 1500°С), можно достигнуть (кроме использования электрической печи— см. рис. 1Х-25) при неполном сгорании метана в кислороде (рис. 1Х-28 и П1-6). Образующиеся при сгорании NHз двуокись углерода и водяной пар реагируют с ацетиленом, что, конечно, нежелательно, но если время реакции мало (0,001— [c.380]

    В интервале температур от 800 до 1100° С при пиролизе бензола наблюдаются небольшие количества метана и следы ацетилена. Количество образующегося метана, примерно, такого же порядка, как и при нагревании углерода с водородом по-видимому, такая реакция, сопровождающая разложение бензола при высоких температурах, является основным источником образования метана. Интересно, что при нагревании так называемого аморфного углерода с водородом не получаются ароматические углеводороды, а вместо них благодаря реакции на ребрах кристаллов графита образуется метан. Можно считать, в свою очередь, что следы ацетилена, образующегося в процессе пиролиза бензола при высоких температурах, обусловлены скорее вторичным разложением метана, чем прямой диссоциацией бензола до ацетилена. Последняя реакция лишь предполагается некоторыми исследователями [4], однако она трудно доказуема. Ацетилен почти полностью разлагается при 750° С при этом получаются ароматические углеводороды, (в значительных количествах бензол) кокс и газы, среди которых обнаруживаются в убывающем порядке водород, метан и этилен [10]. Поскольку этилен является важным продуктом разложения ацетилена, а не самого бензола, то есть основания предполагать, что разложение бензола до ацетилена не относится к одной из основных реакций этого углеводорода. С другой стороны, [c.96]


    Однако жидкий ацетилен может представлять извест- ную опасность вследствие высокого давления его па- 2 ров. 8 [c.41]

    Опубликованные данные о применении процессов адсорбции (или типерсорбции) для выделения ацетилена из смесей пока мало убедительны. Указываются затруднения при отделении СОа, имеющего изотермы адсорбции, близкие к изотермам адсорбции ацетилена, и трудности, связанные со склонностью высших ацетиленовых углеводородов к полимеризации. По другим данным, процессы гиперсорбции позволили получить ацетилен высокой чистоты. [c.118]

    Насыщенный ацетиленом растворитель направляют сначала в стабилизатор растворителя, где он очищается от примесей, имеющих меньшую растворимость но сравнению с ацетиленом. В стабилизаторе выделяются водород, метан, этилен и СО2. Остаток из стабилизатора направляется в ацетиленовую отпарную колонну для извлечения гомологов ацетилена. Верхним продуктол колонны является ацетилен высокой чистоты. [c.60]

    Очевидно, что взрывобезопасность индивидуального ацетилена можно обеспечивать только на основе второго и третьего принципов. Взрывоопасность ацетилена значительно возрастает по мере повышения давления. Наиболее опасны процессы компримирования ацетилена и заполнения им баллонов. В некоторых случаях оборудование, предназначенное для работы с ацетиленом высокого давления, изготовляется особо прочным, рассчитанным на давление недетонационного сгорания. Ввиду возможности возникновения детонации, а также роста давления сверх адиабатического и яри недетонационном горении такая система не гарантирует сохранности оборудования. Его безопасность следует обеспечивать тщательным контролем за невозможностью возникновения поджигающих импульсов. [c.87]

    Исходный продукт для получения поливинилкарбазола — винилкар -базол. Промышленное освоение нроизводства его начало развиваться с 1935 г. носле того, как были найдены условия винилирования карбазола ацетиленом (высокие температуры и давление, катализатор) [112]. Процесс проходит по следующей схеме [113]  [c.811]

    Линия высокого давления является аиболее опасным участком производства ацетилена. Здесь находится не только потенциально взрывоопасное оборудование (компрессоры, осушительные батареи, наполнительные рампы и т. д.), но и получают ацетилен высокого давления (до 2,4 МПа). При таком давлении возможен взрывной распад чистого ацетилена без воздуха или кисл орода, причем минимальная энергия инициирования горения яа несколько порядков меньше, чем при низком и среднем давлении газа. Скорость распространения пламени повышается пр<имерно в линейной зависимости от давления. Возрастает также (и вероятность перехода де-флагращионного горения в детонацию с повышением давления в детонационной волне в неоколько десятков раз по сравнению с первоначальным. [c.87]

    Как уже упоминалось выше, в абсорбере ацетилена наряду с ацетиленом поглощаются и другие компоненты газовой смеси. Поэтому десорбция растворенных в абсорбенте газов в одну ступень не позволяет получить ацетилен высокой концентрации, тогда как для синтеза большинства продуктов на базе ацетилена требуется совершенно чистый исходный мономер с концентрацией не ниже 99,5%. По этой причине десорбцию растворов ацетилена необходимо вести таким образом, чтобы вначале десорбировать малорастворимые газы вместе с незна-128 [c.128]

    Результат полимеризации зависит от концентрации водородных ионов, от состава катализатора, от продолжительности реакции и от температуры. Слабокпслая среда облегчает образовапие медноаммиачного комплекса с ацетиленом высокое содержание хлористого водорода в катализаторном растворе влечет за собой увеличение выхода хлористого винила и ацетальдегида. Выход винилацетилена и количество дивинилацетилена и высших полимеров зависит далее от скорости введения ацетилена и от длительности контакта с катализатором. Чем короче время контакта ацетилена с катализатором, тем выше выход винилацетилена и тем меньше степень превращения ацетилеиа. Отсюда следует также, что эффективность процесса будет тем выше, чем скорее из реакционной смеси удаляют образующийся винилацетилен. Пе менее важным фактором является температура. Температурный оптимум колеблется в широких пределах (50—90°). При температуре до 50° происходит повышенное образование смолообразных веществ, которые необходимо удалять. При строгом соблюдении условий в непрерывном процессе выход винилацетилена составляет 25% ири степени превращения 40%. Монохлористая медь и хлористый аммоний должны находиться в растворе катализатора в молярном соотиошепии, содержание хлористого водорода не должно превышать 0,5%. Процесс обычно ведут при температуре 70—80° и времени контакта 10—15 сек. 12967]. [c.570]

    В жидком кислороде ацетилен должен отсутствовать. При юявлении следов ацетилена в жидкости конденсатора, не превы-дающих 0,4 см /л, адсорбер следует переключить. Если содержа- иe ацетилена превышает эту величину, то воздухоразделительный аппарат нужно перевести на отогревание. В крупных установках технического кислорода на потоке воздуха из турбодетандера в олонну высокого давления устанавливают газовые адсорберы, юглощающие ацетилен и другие углеводороды из газообразного юздуха при низких температурах. [c.125]

    Во всех отраслях промышленности эксплуатируется большое число ацетилено-наполнительных станций различной производительности (от 10 до 320 мVч),. Предусмотрено дальнейшее расширение производства растворенного -ацетилена для автогенной обработки металлов. Производство ацетилена для газопламенной обработки металла основано на высокой растворимости ацетилена в ацетоне в одном объеме ацетона при 20 °С растворяется 20 объемов ацетилена. При этом способность ацетилена к взрыву понижается, а предельное давление, выше которого ацетилен распадается со взрывом, значительно повышается. Растворенный ацетилен перевозят и хранят в стальных баллонах, заполненных специальной пористой массой и ацетоном, газ растворяется в ацетоне и распределяется в порах массы. [c.37]

    НОГО сырья, в частности метана. Сущность процесса окислительного пиролиза заключается в следующем. Подогретый метан и кислород подаются через горелку специальной конструкции в зону пиролиза реактора, где за счет сгорания части метана температура поднимается до 1400—1500° С. Благодаря большой объемной скорости газовой смеси (время пребывания газа в зоне реакции составляет 0,005 сек) при разложении метана образуются ацетилен, окись углерода и водород. Непосредственно после зоны пиролиза в реакторе расположена зона закалки, в которой реакционные газы резко охлаждаются внрыскиважием воды из форсунок. Быстрое охлаждение предотвращает разложение нестойкого при высоких температурах ацетилена. [c.15]

    Наиболее характерные аварии, происшедшие при заполнении баллонов ацетиленом, на ряде заводов связаны с нарушениями режимов наполнения и отсутствием на линиях высокого давления антидетонациоиных преградителей, препятствующих распространению взрыва. Ряд аварий вызван разгерметизацией системы по линии высокого давления и наполнительных рамп, приведшей к загазованности и взрывам ацетилена в помещениях. [c.39]

    На одной из наполнительных станций загорелся ацетилен, что привело к пожару и взрыву баллонов с ацетиленом в наполнительном отделении. Авария произошла в результате разрыва одного из резиновых рукавов с металлическими внутренними оплетками, истечения ацетилена высокого давления через разрушенный рукав и воспламенения ацетилено-воздушной смеси. [c.39]

    На одном из предприятий произошел взрыв ацетилено-воздушной смеси в помещении электроподстанции, здание которой примыкало к компрессорному отделению производства винилацетилена. Вначале отключили подачу электроэнергии вследствие неисправности в энергосистеме завода. Авария должна была ограничиться остановкой производства. Однако при остановке газовых водокольцевых компрессоров ацетилен из системы высокого давления стал поступать в приемный коллектор, так как отсутствовали обратные клапаны на линии нагнетания. . [c.254]

    При этом гранс-форма, имеющая более низкую энергию, подвергается полимеризации, а ис-форма, возникающая при более высоких температурах, является промежуточным продуктом распада, так как в этой конформации облегчается отщепление молекулярного водорода. Таким образом, при 1700—2300 К и отсутствии условий конденсации углерода основным продуктом разложения бензола является ацетилен, а процесс сажеобразо-вания происходит через возбуждение состояния его молекулы. [c.169]

    Современный интерес к применению ацетплена стимулируется развитием процессов его получения из углеводородов низкого молекулярного веса. Все эти процессы включают некаталитический пиролиз углеводородов при высоких температурах в качество начальной стадии. Ацетилен получается в виде относительно разбавленной газовой смеси и концентрируется и очищается при последующих операциях. [c.57]

    Величина Кр является функцией температуры н во многих случаях ее можпо рассматривать как действительную константу равновесия. Холлидей п Экселл полагают, что метан разлагается на углерод и водород через ацетилен. Именно стадия разложения ацетилена и замедляется водородом, небольшое количество по подворггаегося разло кению ацетилена в равновесных условиях способно сохранить высокую концентрацию метана  [c.63]

    Пиролиз этилена до ацетилена. Молера и Стэббс [50] нашли, что термическое разложение этилена в интервале температур от 593 до 743° С и давлении 250 мм рт. ст. является реакцией первого порядка, а при более высоких давлениях — реакцией второго порядка. Ацетилен не является основным продуктом реакции при температурах ниже 800° С и, по-видимому, вообще не образуется при температурах ниже 600° С [8, 15, 38]. Нет сомнения в том, что при более низких температурах и более высоких давлениях полимеризация этилена преобладает над его разложением. При более высоких температурах полимеризация его проявляется на самое короткое время в виде уменьшения объема газа. Вскоре начинает преобладать процесс разложения этилена, полностью маскирующий реакцию полимеризации. Разложение преобладает при температурах выше 800° С. При 1400° С не наблюдается уменьшения объема даже на самое короткое время [93]. [c.81]

    Из рассмотренного следует, что при распаде ацетилена может развиваться давление порядка нескольких сотен атмосфер. Поэтому кажущийся на первый взгляд наиболее простым и надежным способ обеспечения безопасной работы с ацетиленом путем применения аппа ратов, рассчитанных на указанные высокие давления, в большинстве случаев практически неприемлем и нецелесообразен. Что же касается трубопроводов, то в отдельных случаях на основании оценки возможной опасности для сооружаемой системы транспортирования ацетилена и определения возникающих в ней давлений, по-видимому, можно для этих целей ИСПОЛЬЗ )-вать трубы, рассчитанные на давление детонационного распада ацетилена. Однако осуществить указанные мероприятия для промышленных трубопроводов большо го диаметра не представляется возможным. [c.66]

    При применении поршневых компрессоров необхо-ди.м строгий контроль за работой системы смазки цилиндров и подшипников. Для смазки цилиндров применяется масло с высокой температурой вспышки (не менее 215 С). Отработанное. масло, уже использованное для смазки цилиндров,. может содержать растворенные ацетилен и высшие ацетиленовые углеводороды. Реге нерацию. масла следует производить в отдельной установке, чтобы исключить проникание ацетилена или высших ацетиленовых углеводородов в другие машины, имеющие детали из меди или ее силавов (кольца, прокладки и т. д.). [c.101]


Смотреть страницы где упоминается термин Ацетилены высшие: [c.215]    [c.247]    [c.353]    [c.418]    [c.44]    [c.247]    [c.132]    [c.123]    [c.247]    [c.74]    [c.50]    [c.397]    [c.31]    [c.75]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте