Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний строение электронных оболочек

    Строение внешней электронной оболочки атома Углерод Кремний Германий Олово Свинец [c.404]

    Рассмотрим возможные причины сходства элементов. Сходство элемента с его соседями сверху и снизу есть внутригрупповое сходство элементов-аналогов оно обусловлено прежде всего близким строением самых внешних электронных оболочек. Наибольшее сходство и изоморфизм проявляют тяжелые аналоги с близким строением внешних электронных оболочек, например калий и рубидий, серебро и золото, кальций и стронций, цинк и кадмий, скандий и иттрий, иттрий и гадолиний-лютеций, цирконий и гафний, ниобий и тантал, железо и никель, кобальт и никель и т. д. Значительные же различия свойств элементов-аналогов в высших валентных состояниях, когда все электроны уходят с внешней оболочки, большей частью обусловлено несходством строения внешних оболочек ионов (литий и натрий, бериллий и магний, бор и алюминий, углерод и кремний и т. д.). [c.158]


    Группа 1Уа (С, З , Ое, Зп, РЬ). Алмаз плавится при 4000—4100° под давлением 10—20 кбар, но данных о его строении в жидком состоянии нет, хотя полагают, что он превращается в металл. Экспериментальных данных о структуре жидкого кремния также нет что же касается структуры жидкого германия, то установлено, что он плавится с возрастанием координационного числа с 4 до 8 (см. табл. 41). Единственное возможное объяснение этого, данное нами в 1960 г. [162, 212], заключается в том, что плавление сопровождается разрушением ковалентных связей и переходом всех четырех валентных электронов в зону проводимости, вследствие чего ионы германия приобретают конфигурацию с внешней ортогональной -оболочкой. Экспериментальные значения коэффициента Холла (табл. 40) и оптические свойства жидкого германия соответствуют четырем свободным электронам. Наличие таких ионов у германия, сближенных до перекрытия шести вытянутых -облаков, благодаря высокой концентрации электронного газа (4 эл/атом) приводит к тому, что каждый ион стремится иметь координацию 8, свойственную в твердом состоянии объемноцентрированной кубической структуре. О разрушении ковалентных связей при плавлении германия и переходе его в металлическое состояние свидетельствуют чрезвычайно большой прирост энтропии (см. рис. 108) при плавлении и резкое скачкообразное возрастание электропроводимости. Совершенно идентично изменение свойств германия и кремния, а также тот факт, что оба элемента имеют весьма близкие ионизационные потенциалы и что ион кремния обладает внешней 2р -оболочкой, позволили утверждать [162, 212], что кремний, подобно германию, должен плавиться с изменением координационного числа с 4 до 8 , [c.248]

    Главная подгруппа IV группы состоит из углерода, кремния, германия, олова и свинца. По строению электронных оболочек эти элементы делятся на два семейства семейство углерода (углерод и кремний) и семейство германия (германий, олово, свинец). Различие в строении атомов этих элементов сказывается на их химических и каталитических свойствах. В то время как для соединений углерода наиболее характерны процессы ионного типа, соединения элементов семейства германия довольно часто используются в качестве катализаторов окислительно-восстанови-тельных реакций, хотя для всех этих элементов и их соединений процессы с участием именно молекулярного Нз малохарактерны. [c.80]

    Радиусы атомов рутения (1,30), родия (1,34) и палладия (1,37) больше, чем металлов подгруппы железа, что создает геометрические предпосылки для образования более сложных силицидов. Строение электронных оболочек этих металлов характеризуется заканчивающимся заполнением Л 4с -слоя и началом заполнения (кроме палладия) ОдЗ-слоя. Следующие за ними пять элементов (серебро, кадмий, индий, олово, сурьма) не образуют силицидов, а теллур и йод дают лишь малостойкие соединения с кремнием. Можно предполагать, что теплоты образования и температуры плавления силицидов рассматриваемых металлов должны понижаться от рутения к палладию. Отсутствие соответствующих термодинамических данных о силицидах металлов группы палладия и диаграмм состояния систем Ки—51 и КЬ—51 лишают возможности более подробно выявить имеющиеся здесь закономерности. Судя по диаграмме состояния системы Рс1—51, температуры плавления силицидов рутения и родия должны быть относительно невысокими (едва ли выше 1400—1500°). Все изученные силициды рутения, родия и палладия образуются с уменьшением объема (см. табл. 2). [c.205]


    VII группы, за исключением Мп—51, почти совершенно не изучены. Строение электронных оболочек марганца, технеция и рения близко к таковым переходных металлов VI группы, но атомные радиусы их иные. Поэтому наряду с известным подобием должно быть и некоторое отличие в строении диаграмм состояния с кремнием и структуре силицидов переходных металлов VI и VII групп. Все полученные силициды марганца и рения имеют металлический вид. [c.183]

    Аналогия между всеми элементами этой группы выражается в том, что максимальная валентность их является одинаковой и равной четырем отличительные особенности заключаются в металлоидном характере углерода и кремния, незаполненной -электронной оболочке у элементов подгруппы титана и постепенном переходе от кремния к металлам — германию, олову и свинцу. Различие между этими элементами также проявляется в изменении характера связи, являющейся ковалентной для углерода, кремния, германия и олова (низкотемпературной модификации) и чисто металлической для аналогов титана и свинца. Металлический характер элементов в подгруппе германия возрастает сверху вниз. Таким образом, получается ряд элементов, где металлические свойства последовательно снижаются РЬ —> Зп Ое 31. Сходство и различие в строении атомов и характере связи обусловливает и различные виды взаимодействия с другими элементами периодической системы и, в частности, с кислородом. Эти элементы по подгруппам отличаются окисляемостью, свойствами кислородных соединений, образованием или отсутствием твердых растворов кислорода в металлах. [c.18]

    Собственные и примесные полупроводники. Полупроводники, проводимость которых обусловлена ионизацией атомов чистого вещества (германия, кремния и т. д.), называются собственными. Полупроводники, у которых основную роль играет ионизация атомов легирующих добавок, называются примесными. В основе электрических характеристик тех и других лежат химические свойства соответствующих элементов, обусловленные их положением в периодической системе— в первою очередь строением электронных оболочек атомов. [c.430]

    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Несмотря иа то что у атома кремния строеипе внешней электронной оболочки такое же, как у атома углерода, в химии этих двух элементов мало сходства. Действительно, хотя структура элементного кремния такая же, как одной из модификаций углерода— алмаза, а также соблюдается соответствие формул некоторых простейших соединений кремния и углерода, однако в химических и физических свойствах соединений этих элементов редко наблюдается большое сходство. Поскольку кремний бо-. (ее электроположителен, чем углерод, со многими металлами он образует соединения, которые имеют строение, типичное длл сплавов (разд. 23.4), и некоторые из них имеют ту же структуру, что и соответствующие бориды. Фактически кремний во-многом больше напоминает бор, чем углерод, хотя формулы соединений кремния и бора обычно совершенно различны. Некоторые из таких параллелей в химии кремния и бора рассмотрены в начале следующей главы. Силициды ио своему строению мало ио.хожи па карбиды, по весьма сходны с боридами например, -)то проявляется в образовании каркасов из атомов 51 (В), хотя немногие силициды н бориды действительно пзоструктурны. [c.88]

    Имеющиеся данные показывают, что системы, образованные кремнием с металлами подгруппы платины, весьма напоминают системы Ки—51, КЬ—51 и Рс1—51. Это объясняется близостью атомных радиусов металлов и известным подобием строения электронных оболочек (окончание заполнения ( -уровня). [c.208]

    Особенности строения электронной оболочки атома кремния влияют на реакции нуклеофильного замещения под действием спиртов, галогенов, кислот и аминов. [c.64]

    Исходя из положения углерода и кремния в периодической системе элементов, изобразите схему строения электронных оболочек их электронейтральных атомов. [c.52]

    Кремний, так же как и углерод, является элементом IV группы периодической системы Менделеева строение их внешних электронных оболочек одинаково (рис. 31-1). Вследствие этого можно ожидать значительной степени сходства химических свойств этих элемен- [c.586]


    В отличие от элементов главной подгруппы II группы элементы побочной подгруппы не образуют с кремнием силицидов. Наблюдается известная аналогия в поведении этих элементов и элементов главных подгрупп III, IV и V групп периодической системы элементов. Это связано, очевидно, со строением их электронных оболочек, вследствие чего связи с кремнием оказываются слабее, чем внутри кристаллической решетки чистого элемента. [c.61]

    Особенности строения трех внешних электронных оболочек могут быть отражены путем сдвигов элементов в периодической системе Менделеева, которая в этом случае приобретает вид, представленный в табл. 11 (короткая форма) и табл. 10 (развернутая форма). В этих таблицах смещения элементов-аналогов из вертикальных столбцов характеризуют, с одной стороны, различия их строения и свойств (бор и алюминий, углерод и кремний и т. д.), а с другой, они символизируют сближение свойств элементов разных подгрупп одной и той же группы, например алюминия и скандия, кремния и титана и т. д. Эти же смещения указывают на сближение свойств элементов соседних групп в одном диагональном направлении (например, лития с магнием, бериллия с алюминием, бора с кремнием и т. д.) и на отдаление свойств элементов в другом диагональном направлении (например, магния с бором, алюминия с углеродом, кремния с азотом, ниобия с хромом, молибдена с марганцем и т. д.). [c.159]

    По размерам атомов элемента можно косвенно судить об его окислительно-восстанбвительных свойствах, т. е. о том, является ли он металлом или неметаллом. Чем больше атом, тем ближе расположены к ядру электроны и тем их связь с ядром прочнее. Следовательно, такой элемент предпочтительнее будет проявлять окислительные свойства и являться неметаллом, так как небольшие размеры атомов соответствуют элементам концов периодов,- у которых заполнение орбиталей электронами близко к завершению. Ориентировочно можно считать, что элемент является неметаллом, если орбитальный радиус его атомов не превышает 0,1 нм. Связывая металличность свойств простого вещества со строением электронной оболочки его атомов, необходимо отметить, что у атомов металлов в наружном слое не бывает более четырех электронов (за исключением висмута), а у атомов неметаллов — менее пяти электронов (за исключением водорода, бора, углерода и кремния). [c.204]

    Из сделанного обзора строения атомов первых 20 элементов периодической системы можно сделать чрезвычайно важные выводы. У атомов водорода и гелия, входящих в п е р в ы й период периодической системы Д. И. Менделеева, имеется одна электронная оболочка, причем образование этой оболочки начинается у водорода, первого элемента этого периода, и кончается у гелия, последнего элемента этого периода. У атомов лития, бериллия, бора, углерода, азота, кислорода, фтора и неона, входящих во второй период периодической системы, имеются две электронные оболочки, причем образование второй оболочки начинается у лития, первого элемента этого периода, и кончается у неона, последнего элемента этого периода. У атомов натрия, магния, алюминия, кремния, фосфора, серы, хлора и аргона, входящих в третий период периодической системы, имеются три электронные оболочки, причем образование третьей электронной оболочки начинается у натрия, первого элемента этого периода, и кончается у аргона, последнего элемента этого периода. У атома калия, начинающего четвертый период периодической системы, начинается образование четвертой электрон- [c.212]

    Кроме электронной проводимости у полупроводников может быть другой тип проводимости, называемой дырочной или р проводимостью. Схему образования дырок рассмотрим на примере строения атома кремния, так как кремниевые управляемые вентили (КУВ) широко применяются в полупроводниковой технике. У атома кремния 14 электронов (рис. 1.6), из которых 4 валентные. Предположим, что один из валентных электронов иод влиянием тех или иных причин, например электрического поля, покинул атом. В этом случае в электронной оболочке атома появится незамещенное пустое место. Это незамещенное место в валентной орбите атома получило название дырки. Сам же атом при наличии дырки становится положительным ионом и приобретает положительный заряд. [c.24]

    В главную подгруппу IV группы входят углерод, кремний, германий, олово и свинец. Различие в структуре электронных оболочек позволяет разделить эти элементы на два семейства семейство углерода (С, Si), в котором у атомов под валентными оболочками находятся оболочки соответствующих инертных газов, и семейство германия (Ge, Sn, F b) с JS-элек-тронными подвалеитными оболочками. Такое различие в строении атомов, резко сказывающееся на свойствах элементов в первых двух группах периодической системы, к III и IV группе сглаживается, что и оправдывает включение элементов этих обоих семейств в главную подгруппу. Все же некоторое различие в ходе изменения химических и каталитических свойств в обоих семействах делает целесообразным рассмотрение их в отдельности. [c.334]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления). Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу. Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи. С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    Исследования элементов при высоких давлениях, кардинальным образом изменяющих строение и степень перекрытия внешних электронных оболочек, привели к обнаружению неизвестных ранее модификаций рубидия, цезия, бария, галлия, индия, таллия, кремния, германия, олова, свинца, сурьмы, висмута, титана, циркония и других элементов. Круг полиморфных металлов расширился настолько, что можно полагать, что в природе вообще не существует элементов, сохраняющих одну и ту же структуру в достаточно широком диапазоне давлений и температур. [c.196]

    Кремний, так же как и углерод, является элементом IV группы периодической системы Менделеева строение их внешних электронных оболочек одинаково (рис. 31-1). Вследствие этого можно ожидать значительной степени сходства химических свойств этих элементов, несмотря на различный размер атомов, различную электроотрицательность и различия энергий электронов внешней оболочки. На химию кремния в отличие от углерода [c.465]

    Вместе с тлеродом, германием, оловом и свинцом кремний составляет гомологический ряд элементов, отличающихся от всех остальных наличием четырех валентных электронов на внешней электронной оболочке. Поэтому максимальная валентность кремния и его электронных аналогов равна четырем. Строение и физические константы атомов серий (химических типов) элементов четвертой главной группы периодической системы приведены в табл. 2. [c.9]

    В основном состоянии атом кремния имеет строение внешней электронной оболочки 3s23/j2 и двухвалентен. Возбуждение его до ближайшего четырехвалентного состояния (3s3p ) требует затраты 95 ккал г-атом, т. е. почти такой же энергии, как и в случае углерода (VI 3 доп. И). Последовательные энергии ионизации этого атома равны 8,15 16,34 33,46 и 45,13 ав. Его сродство к одному электрону оценивается в 34 ккал/г-атом. [c.586]

    КРЕМНИЙ (Sili ium) Si — химич. элемент IV гр. периодич. системы Менделеева п. н. 14, ат. в. 28,086. Состоит из трех стабильных изотопов Si e (92,27%), 3i29 (4,68%) и Si (3,05%). Сечение захвата тепловых нейтронов атомом К. 0,13 барн. Получены искусствешю радиоактивные изотопы, в т. ч. 3i (Гуз = = 710 лет). Внешняя электронная оболочка атома К. имеет строение Зе Зр . Энергии ионизации (в se) Si Si — 3i2+ Si —> Si + соответственно равны 8,15 16,34 33,46 45,13. Сродство к электрону Sio -)- е Si- 1,22 эв. [c.401]

    С большим объемом електронной оболочки, наличием вакантных Зй-орбит у атома кремния связано то, что данный элемент может проявлять валентность, отличную от 4 [1—2]. Для кремния характерно особое строение валентно-электронной оболочки. Валентную группу кремния образуют четыре электрона, занимающие одну Зз- и три Зр-орбиты  [c.63]

    КРЕМНИЙ (Sili ium) 81 — химич. элемент IV гр. периодич. системы Менделеева н. п. 14, ат. в. 28,086. Состоит из трех стабильных изотопов 81 8 (92,27%), 3124 (4,68%) и SP (3,05%), Сечение захвата тепловых нейтронов атомом К. 0,13 барн. Получепы искусственно радиоактивные изотопы, в т. ч. 81 Ti/. = = 710 лет). Внешняя электронная оболочка атома К. имеет строение 3s .3/) . Энергии ионизации (в эв) 81 —31+ —> 81" —31 —> 8Н+ соответственно равны 8,15 16,34 33,46 45,13. Сродство к электрону 81 + е — 81 1,22 эв. [c.401]

    В основном состоянии атом кремаия имеет строение внешней электронной оболочки 3s 3p и двухвалентен. Возбуждение его до ближайшего четырехвалентного состояния (3s3p ) требует затраты 95 ккал/г-атом, т. е. почти такой же энергии, как н в случае углерода (VI 3 доп. 9). Энергетический уровень 3d лежит у атома кремния на 36 ккал/г-атом выше уровня 4s. Последовательные ионизационные потенциалы этого атома равны 8,15 16,34 33,46 и 45,13 в. Его сродство к одному электрону оценивается в 34 ккал/г-атом. [c.94]

    Таким образом, способность элемента к образованию молекул различных веществ, характер возникающих связей, вид и строение изолированной молекулы — все это находится в тесной связи со строением атома и, главным образом, с конфигурацией внешней электронной оболочки его, т. е. с положением элемента в периодической системе элементов. Можно установить определенные аналогии в этих характеристиках элементов одной группы. Однако на практике приходится иметь дело не с отдельной изолированной молекулой, а с большим числом их, с веществом в целом. Естественно возникает вопрос о взаимодействии молекул и относительной силе этого взаимодействия. Силы, обусловливающие взаимодействие молекул, называются межмолеку-лярными. Они определяются не только строением молекул, но и агрегатным состоянием вещества, так как при изменении последнего изменяется и расстояние между молекулами, а следовательно, и силы взаимодействия между ними в газообразном состоянии в веществе действуют наименьшие межмолекулярные силы, а в твердом — наибольшие. При этом аналогии, характерные для молекул, могут и не проявляться у данных веществ, что можно проследить на примере двух соединений СО2 и SIO2. Углерод и кремний элементы—аналоги IVA-группы, расположенные соответственно во 2-м и 3-м периодах. В возбужденном состоянии атомы этих элементов характеризуются электронными конфигурациями 2s p и т. е. имеют по четыре непарных [c.127]

    Кремний и углерод имеют одинаковое строение наружных электронных оболочек, содержащих по четыре валентных электрона. Образуемые ими соединения имеют аналогичные формулы соединения с кислородом (СОг ЗтОг), водородом (СН4— 5Ш4, СгНе—Э гНа), галогенами (СС .—31С14) и т. п. Углерод и кремний способны кристаллизоваться в кубической системе, проводить электрический ток, растворяться в расплавленных металлах и выделяться при охлаждении этих сплавов в элементарном виде. [c.14]

    Распределение по фазам зависит от строения внешних электронных оболочек атома. Но распространенность химических элементов в данной системе в известной степени оказывает определенное влияние на распределение но фазам. Наиболее распространенными элементами, как мы видели, являются четно-четные О, 81, 8, Ее, Mg. В метеоритном веществе они об разуют три главных фазы, причем превалирует силикатная фаза, благодаря большому содержанию О и 81, затем железная фаза из-за значительного содержания Ее и, наконец, сульфидная фаза, в связи с заметным содержанием 8. Но представим на момент, что кислород в составе метеоритного вещества отсутствует, окисные соединения, силикаты и другие не образуются, все химические элементы встречаются лишь в виде сульфидов кремния, алюминия и т. п. Обратно — при отсутствии 8 все металлы, которые мы обычно видим в качестве сульфидов, превратились бы в окиси 8Ь, В1, РЬ, 8п и т. д. Таким образом, первичное распространение только двух элементов О и 8 и их соотношения задают характер распределения всех других элементов по этим превалирующим фазам или по главным руководящим элементам. Вот почему Гольдшмидт и предложил первую, по существу геохимическую классификацию химических элементов. До того геохимики пользовались только химической классификацией — редкие земли, нейтральные газы, благородные металлы и т. п. Он выделил группу сидерофиль-ных элементов, образующих с железом непрерывные твердые растворы, [c.209]

    Рентгеноструктурный анализ и электронографическое исследование четырехиодистого кремния, четыреххлористого кремния и тетраметилсилана также указывают на тетраэдрическое строение. Однако было бы неправильным делать вывод о том, что во всех соединениях кремния последний четырехвалентен и что все эти соединения тетраэдричны, поскольку известны соединения, в которых кремний шестиковалентен, например в гексафторсиликат-ионе 81Р,9 отсюда следует, что кремний может, использовав Зй-орбитали, расширить свою валентную оболочку так, что на ней разместится 10 электронов. В соединениях тина 81 — X Зй-орбитали кремния используются [c.468]


Смотреть страницы где упоминается термин Кремний строение электронных оболочек: [c.67]    [c.110]    [c.225]    [c.17]    [c.13]    [c.188]    [c.202]    [c.290]    [c.33]    [c.88]    [c.114]   
Основы общей химии Том 2 (1967) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Электронная оболочка

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте