Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы с полиморфными превращениям

    Другим современным методом, служащим для построения диаграмм состояния, является метод рентгеноструктурного анализа. Рентгеноструктурный анализ является одним из наиболее совершенных методов изучения всех превращений, сопровождающихся изменением кристаллической решетки. Поэтому он особенно полезен при исследовании полиморфных превращений, образования и распада твердых растворов, а также образования химических соединений. Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения. Рентгеноструктурный анализ применяется для качественного и количественного фазового анализа гетерогенных систем, для исследования изменений в твердых растворах, определения типа твердого раствора и границ растворимости. Рентгеноструктурный анализ является дифракционным структурным методом он основан на взаимодействии рентгеновского излучения с электронами вещества, в результате которого возникает дифракция рентгеновского излучения. Основную информацию в рентгеноструктурном анализе получают из рентгенограмм. Типы рентгенограмм сильно зависят от природы и состава фаз. Между типом рентгенограммы и типом диаграммы состояния существует определенная связь. Особенно полезны рентгенографические данные для построения той части диаграмм, которые описывают равновесные процессы в твердом состоянии, где процессы установления равновесных состояний протекают очень медленно. [c.235]


    Железо имеет четыре модификации (рис. 235). До 770 С устойчиво a-Fe с объемноцентрированной кубической решеткой и ферромагнитными свойствами. При 770 С a-Fe переходит в P-Fe у него исчезают ферромагнитные свойства и Железо становится парамагнитным, но кристаллическая структура его с/щественно не изменяется. При 912°С происходит полиморфное превращение, при котором изменяется структура кристалла из объемноцентрированной переходит в гранецентрированную кубическую структуру y-Fe, а металл остается парамагнитным. При 1394°С происходит новый полиморфный переход и сЗразуется б-Fe с объемноцентрированной кубической решеткой, которое существует вплоть до температуры плавления железа (1539°С). [c.582]

    Кроме того, на основе форстерита получают форстеритовую керамику. Последняя в противоположность форстеритовым огнеупорам обладает более плотной структурой. Используется главным образом в качестве высокочастотного диэлектрика. Как и стеатитовая, форстеритовая керамика имеет незначительные диэлектрические потери и высокое удельное электрическое сопротивление, но характеризуется более высоким термическим расширением. Преимущество форстеритовой керамики в том, что она не подвержена старению из-за отсутствия полиморфных превращений. Используется для спаев с металлами. Изготавливают форстеритовую керамику из талька и оксида магния или магнезита способом горячего литья под давлением. [c.104]

    С происходит полиморфное превращение, при котором изменяется структура кристалла из объемноцентрированной переходит в гранецентрированную кубическую структуру V Fe, а металл остается парамагнитным. При 1390°С происходит новый полиморфный переход и образуется fi-Fe с объемноцентрированной кубической решеткой, которое существует вплоть до температуры плавления железа (1536°С). [c.620]

    Чрезвычайно интересным и перспективным оказалось то, что, несмотря на кратковременность сжатия (10 ...10 с), во многих веществах могут протекать различные процессы полиморфные превращения, химические реакции, изменение дефектности структуры и др. Эти превращения в зависимости от условий опыта и строения вещества могут быть как обратимыми, так и необратимыми. Возникновение ударной волны в среде обусловлено тем, что при больших давлениях скорость звука растет с увеличением сжатия. В результате звуковая волна становится все более крутой, пока не возникнет разрывность состояния вещества перед волной и за ней. Область, где имеет место такая разрывность, называется фронтом ударной волны, который представляет собой узкий слой [для ионных кристаллов и металлов, например, ширина фронта равна около (2...3) X Х10 нм], в котором скачком меняются давление, тем- [c.212]


    Полиморфные превращения могут сопровождаться и существенными изменениями типа химической связи в кристалле. Так, в алмазе связи ковалентные, а в графите внутри слоя — ковалентно-металли-ческие, а между слоями — межмолекулярные. [c.144]

    Физические и химические свойства. Железо имеет ряд полиморфных видоизменений. Полиморфные превращения железа имеют очень большое значение в технологии металлов, так как они обусловливают структуру и свойства сплавов. Устойчивое при обычной температуре а-железо характеризуется объемноцептри-рованной кубической решеткой при 769°С оно теряет свои магнитные свойства — происходит 3-превращение без изменения структуры решетки при 908°С осуществляется переход в -железо с гранецентрированной кубической решеткой, при 1390°С переход в 6-железо с объемно центрированной кубической решеткой, а прн 1534°С плавление. [c.300]

    Олово — серебристо-белый легкоплавкий металл при обычных условиях. Устойчивая при комнатной температуре тетрагональная /3-модификация олова при 13,2°С в равновесных условиях переходит в алмазоподобную а-модификацию. Однако с заметной скоростью это превращение происходит при более низких температурах порядка -30...-40 С. В ходе этого превращения происходит значительное увеличение удельного объема (на 25,6%), что обусловлено значительным уменьшением координационного числа при переходе от плотноупакованной к рыхлой алмазоподобной структуре. Этот фазовый переход инициируется и ускоряется при внесении затравки о-олова. При соприкосновении белого олова с серым при низких температурах процесс полиморфного превращения протекает чрезвычайно быстро. Оловянные предметы при этом рассыпаются в порошок. Это явление получило название "оловянной чумы". [c.381]

    Топохимические реакции могут протекать и без участия газовой фазы. К числу подобных реакций относятся многие важные процессы, протекающие в металлах и сплавах, такие как рекристаллизация, полиморфные превращения, в частности мартенситные, старение и др. [c.387]

    К числу топохимических реакций можно отнести такие важные процессы, происходящие в твердом состоянии в металлах и сплавах, как рекристаллизация, старение, полиморфные превращения, среди которых особое место занимают мартенситные. [c.281]

    Немаловажное значение имеет и последующий передел (деформация), формирующий структуру сплавов, гак как сплавы тугоплавких металлов не имеют полиморфных превращений и, следовательно, их структуру кардинально нельзя изменить термической обработкой. [c.8]

    Во многих случаях в системах, образованных титаном, цирконием или гафнием с другими металлами, возникают интерметаллические соединения. Как правило, они сравнительно непрочны. С некоторыми металлами только а-видоизменения образуют интерметаллиды, а р-видоизменения образуют с этими металлами только твердые растворы. Интерметаллические соединения титана, циркония и гафния с этими металлами существуют только при сравнительно низких температурах и разлагаются при температурах полиморфных превращений а р. Большинство интерметаллических соединений титана, циркония и гафния нацело разлагаются при плавлении, и только некоторые из них остаются частично неразложенными. С титаном, цирконием и гафнием образуют соединения металлы, расположенные в периодической системе правее У1В-группы, т. е. сравнительно мало активные. [c.86]

    На рис. 30 показана зависимость растворимости водорода в железе от температуры. Изломы на кривой соответствуют полиморфным превращениям железа и температуре его плавления. Характерно, что при температурах, приближающихся к температуре кипения железа, растворимость водорода в нем снова уменьшается (удаление водорода испаряющимся металлом). [c.128]

    Физические свойства марганца резко отличаются от свойств других -металлов отсутствие вакантных подуровней при наполовину законченном подуровне обусловливает устойчивость его электронной оболочки, что, в свою очередь, приводит к уменьшению металлических свойств и снижению концентрации электронов проводимости. Полиморфные превращения марганца в этом отношении характерны а-Мп — сложный куб из 31 атома, р-Мп — сложный куб из 29 атомов имеют неметаллические структуры кристаллических решеток и только 7-Мп и б-Мп — типичные металлические структуры, напоминающие -Ре и б-Ре. При общем обзоре свойств -металлов (см. рис. 164,166) уже фиксировалось внимание [c.352]

    Физические свойства марганца резко отличаются от свойств других металлов отсутствие вакантных подуровней при наполовину законченном подуровне й обусловливает устойчивость его электронной оболочки, что в свою очередь приводит к уменьшению металлических свойств и снижению концентрации электронов проводимости. Полиморфные превращения марганца в этом отношении характерны а-Мп— сложный куб из 31 атома, р-Мп — сложный куб из 29 атомоз имеют неметаллические структуры кристаллических решеток и толь- [c.366]

    Железо имеет несколько модификаций (рис. 239). До 769 °С устойчиво а-железо с объемно центрированной кубической решеткой и ферромагнитными свойствами. При 769 °С о-Ре переходит в / -Ре исчезают ферромагнитные свойства и железо становится парамагнитным, но кристаллическая структура его существенно не изменяется. При 910 °С происходит полиморфное превращение, при котором изменяется структура — образуется гранецентрированная кристаллическая решетка 7-Ре, но металл остается парамагнитным. При 1400° С происходит новый полиморфный переход и образуется -Ре с объемно центрированной кубической решеткой, существующее вплоть до температуры плавления железа (1539 °С). Рутений и осмий имеют гексагональную кристаллическую решетку (см. рис. 28). [c.633]


    Рений - пластичный металл с ГПУ-решеткой, не имеющий полиморфных превращений. [c.4]

    Отмети.м важную закономерность полиморфных превращений в металлах если металл имеет ОЦК структуру при ОК или начиная с некоторой более высокой температуры, то при дальнейшем нагревании вплоть до Т п.т ОЦК-структура не испытывает никаких превращений. Ряд металлов имеют ОЦК структуру при абсолютном ОК (К, КЬ, Сз, Рг, Ва, Ка, Ей, N0, V, МЬ, Та, Ра, Сг, Мо, Щ. [c.35]

    Олово — серебристо-белый легкоплавкий металл при обычных условиях. Устойчивая при комнатной температуре тетрагональная ( (-модификация олова (белое олово) при 13,2 С в равновесных условиях переходит в алмазоподобную а-модификацию (серое олово). Однако с заметной скоростью это превращение протекает при более низких температурах порядка —30. . . —40 °С. В ходе этого превращения происходит значительное увеличение удельного объема (на 25,6%), что обусловлено значительным yMeHbUjenneM координационного числа при переходе от плотноупакованной к рыхлой алмазоподобной структуре. Этот фазовый переход инициируется и ускоряется при внесении затравки а-олова. При соприкосновении белого олова с серым при низких температурах процесс полиморфного превращения протекает чрезвычайно быстро. Оловянные предметы при этом рассыпаются в порошок. Это явление получило название оловянной чумы . Резкое ускорение фазового перехода в присутствии затравки аналогично бурной кристаллизации пересыщенного раствора, находящегося в метастабильном состоянии. [c.217]

    Многие металлы при из.менении температуфы и давления претерпевают полиморфные превращения. При плавлении металлы сохраняют свои электрические, тепловые и оптические свойства Вблизи температуры плавления в жидких металлах наблюдается при.мерно такой же ближний порядок, как и в кристаллических металлах, который с повышением температуры нарушается вплоть до полного разупорядочения. [c.43]

    В соответствии с закономерностями изменения энтропии системы прямая претерпевает излом вверх при фазовом превращении металла и вниз при превращении соединения. Изломы резче всего в точках кипения (из-за резкого изменения энтропии системы при образовании газовой фазы). В точках полиморфного превращения изломы незначительны. [c.218]

    Полиморфные превращения, связанные с изменением в первичной координационной сфере. При подобных полиморфных превращениях полностью изменяется расположение ближайших к данному атому соседних атомов и образуется новый тип решетки. Деформационные превращения при переходе от низкотемпературной формы в высокотемпературную обусловлены растяжением связей и приводят к понижению координационного числа и образованию более рыхлой структуры. Для превращений такого рода требуется сравнительно небольшая энергия активации, и они происходят достаточно быстро. Деформационные превращения этого типа характерны для некоторых металлов, изменяющих свою решетку от гра-нецентрированной кубической (координационное число 12) на объ- [c.53]

    Многие металлы испытывают аллотропическое превращение. Аллотропическим или полиморфным превращением называют изменение решетки кристаллического тела. Такое изменение происходит изотермически и характеризуется температурой фазового равновесия (То) двух аллотропических разновидностей. Например, железо при температурах до 910 °С и при 1401-1539 °С образует а-фазу и кристаллизуется в виде кубической объемноцентрированной решетки, а в интервале температур 910-1401 °С образует 7-фазу в виде кубической гранецентрированной решетки. [c.29]

    Для многих неорганических солей абсолютная температура спекания приблизительно в 2 раза меньше абсолютной температуры плавления (по разным данным T JT n равно 0,44 или 0,57). Для оксидов металлов T JTnn 0,8. Чем мельче кристаллический порошок, тем больше его удельная площадь поверхности и тем сильнее он спекается ири нагревании. Спекание может быть вызвано также полиморфными превращениями и выделением капиллярной или адсорбированной влаги. [c.343]

    Двуокись титана TIO2 также имеет переменный состав TiO , где X = 1,98—2,0 колебания ее состава (дефицит кислорода) связаны с образованием кислородных вакансий. Характер связи в двуокиси титана ионно-ковалентный. Дефектная двуокись титана вследствие избытка металла обнаруживает электронную проводимость и полупроводниковые свойства, поэтому используется как компонент сложных окисных полупроводниковых материалов. Двуокись титана существует в трех полиморфных модификациях рутил, анатаз и брукит. Характер полиморфных превращений не вполне ясен по-видимому, переход анатаз рутил энантиотропен, а переходы брукитанатаз и брукит- рутил монотропны. При температуре около 900° и брукит, и анатаз превращаются в рутил. [c.215]

    Физические и химические свойства. В свобо.тном состоянии титан—типичный металл, по внешнему виду напоминающий сталь. В обычных условиях поверхность титана покрыта тонкой оксидной пленкой, лишающей ее зеркального блеска. Кристаллический титан существует в двух полиморфных видоизменениях низкотемпературном— (i и высокотемпературном — р. а-Титан и.меет плот-ноупакованную гексагональную, а р-титан — объемноцентрирован-ную кубическую решетку. Температура полиморфного превращения a-Ti=rip-Ti 882,5°С (АЯ = 3,69 кДж/моль). [c.261]

    Изменение концентрации точечных Д. используется для управления физ.-хим. св-вами твердых в-в и хим. процессами с их участием. Так, допируя галогениды серебра ионами кадмия и увеличивая тем самым в них концентрацию катионных вакансий, удается понизить адсорбцию на них додециламина-коллектора в процессе флотации. Точно так же допирование прир. сульфида свинца (галенита) ионами серебра и висмута изменяет заряд пов-сти н ее способность к адсорбции заряженных молекул коллектора при флотации. Допируя TiOj ионами тантала, можно существенно изменять скорость заполнения межгрануляр-ного пространства при спекании методом горячего прессования. Ионную проводимость ZrOj. возникающую вследствие допирования СаО, связывают с образованием вакансий и своб. ионов 0 . Точечные Д. изменяют скорость полиморфных превращений, коррозии металлов и сплавов, процессов спекания и рекристаллизации керамич. материалов. Т. наз. вакансионные состояния часто предшествуют образованию частиц продукта в виде самостоят. твердой фазы при гетерог хим. р-циях. В ряде случаев получение кристаллов с заданной концентрацией точечных Д. определенного вида необходимо при создании материалов для микроэлектроники, лазерной техники, люминофоров и др. [c.30]

    Наиболее опасным для изделий из олова является полиморфное превращение. При переходе /3-модификации в -модификацию в связи с резким увеличением удельного объема (на 25,6%) компактный металл рассьша-ется в серый порошок ( серое олово ). Наиболее быстро превращение протекает при —33 Си резко ускоряется в присутствии зародьпней а-олова. Этот процесс получил название оловянная чума . [c.168]

    Каждый из грех твердых металлов существует в двух полиморфных видоизменениях — а и р. Видоизменения а, устойчивые при сравнительно низких температурах, имеют плотно упакованную гексагональную решетку, высокотемпературные видоизменения р — объем-ноцентрированную кубическую решетку. В табл 11 приведены значения температур полиморфного превращения, плавления, кипения и скрытых теплот этих превращении титана, циркония и гафния. [c.78]

    Физические и химические свойства. Металлический скандий получают электролизом расплава хлоридов, металлотермическим восстановлением 5сРз или 5сС1з. У чистого скандия серебристый блеск, на воздухе он тускнеет, сравнительно мягок (твердость по Бринеллю 143 кг/мм ), хорошо обрабатывается. Содержание 1—2% примесей делает металл твердым и хрупким. Имеет гексагональную плотноупако-ванную решетку с параметрами а = 3,3090, с =5,2733А плотность 2,90 г/см . При 1450° претерпевает полиморфное превращение. В вакууме (10" мм рт. ст.) при 1400—1450° возгоняется [4]. Это свойство используется при получении металла высокой чистоты.Т. пл. 1539°, т. кип. 2630°. Сечение захвата тепловых нейтронов 13 барн. Атомная магнитная восприимчивость у= 236-10" (20°), что свидетельствует [c.3]

    Бериллий — легкий светло-серый тугоплавкий хрупкий металл. Структура низкотемпературной модификации бериллия характеризуется гексагональной решеткой а = 2,285 А, с = = 3,583 А [20]. До 1200° С не наблюдается полиморфных превращений бериллия. Фазовый переход а-Ве в кубическую форму Р-Ве ( 2 = 2,546А) происходит при 1254°С [21]. Физические корт-станты бериллия приведены ниже [14]  [c.8]

    Соли кислородсодержащих кислот. Сульфаты TI2SO4 близок по свойствам к суль-металлов. Сравнительно хорошо растворяется 76). Плотность его 6,8 г/см . Плавится при полиморфное превращение при 505 [161]. [c.328]

    Нитраты. Растворяясь в НЫОз, таллий, П2О, ИоСОз образуют нитрат ТШОз- Из растворов он выделяется в виде безводных крупных молочно-белых кристаллов. Плавится при 208° и имеет полиморфное превращение при 79 и 147° [170 . Выше температуры плавления заметно испаряется, частично разлагаясь (температура кипения 818°) [171 [. Нитрат таллия (I) хорошо растворяется в воде (см. рис. 77), особенно в горячей, и плохо в спирте. С нитратами некоторых тяжелых металлов образует двойные соединения, обладающие низкими температурами плавления, например TlAg(NOз)2 и TlHg(NOз)з. [c.330]

    Характерные для швов, сваренных с ЭМП, отличия в структуре и распределении легирующих элементов дополняются при сварке материалов, претерпевающих полиморфные превращения в твердой фазе, благоприятным изменением характера выделения продуктов распада первичной структуры, что делает конечную структуру более однородной. Это приводит к повышению ударной вязкости металла шва при сварке с ЭМП, например, сплава ВТ6С (на образцах, подвергнутых старению) с 5 кгс м/см до 7,55 кгс м см и снижению порога хладноломкости сварных соединений стали 09Г2С с минус 60 до минус 70° С. [c.29]

    Керамические оксидные материалы [450] обычно готовят смешиванием исходных оксидов или солей металлов с последующим обжигом. В зависимости от плотности, обусловленной химическим и гранулометрическим составом исходных веществ и степенью обжига, керамические материалы подразделяют на пористые (водопоглощение более 5 %) и спекшиеся (водопоглощение менее 5 %). Применения керамических материалов самые разнообразные, в том числе технические (электро-, радио- и др.). При обжиге керамической массы протекают сложные физико-химические процессы (дегидратация, диссоциация, полиморфные превращения, реакции окисления и восстановления и др.). Степень спекания повышается с ростом температуры, и при этом снижается пористость и уменьшаются размеры образца, увеличиваются его прочность, химическая стойкость и диэлектрические свойства. Во многих случаях процессы спекания керамик протекают с участием жидкой фазы, образующейся из основных кристаллических фаз и способствующей образованию эв-тектик. [c.312]

    Повышение те.мпературы в связи с увеличением энергии и а.мпли-ту ды тепловых колебаний атомов вызывает полиморфные превращения многих. металлов Наиболее характерными д.ля металлов являются фазовые переходы плотных гексагональнььх (ПГ) и гранецентрированных кубических (ГЦК) упаковок в объемно-центрированную кубическую (ОЦК) структуру (табл. 3.1). [c.34]

    Для оценки давления в камере синтеза широко применяется метод калибровки при комнатной температуре, основанный на сопоставлении усилия пресса и давления полиморфного превращения в реперном веществе. В качестве реперов при давлении до 10 ГПа используются чистые металлы Се, В1, Т1, Ва, УЬ, для которых значения давления превращений согласно Международной шкале 1968 г. составляют Се = 0,7 В1 I—П = 2,55 В1 II—П1 = 2,69 Т 11—111 = 3,67 УЬ 1—11 = 4,0 Ва 1—11 = 5,9 В1 V—УП = 8,9 ГПа и халькогениды Сс15е = 3,03 Сс1Те = 3,53 2пТе = 4,01 РЬ 5е = 4,23 РЬТе = 4,97 ГПа. Полиморфные превращения в указанных веществах фиксируются по изменению их электропроводности. Датчик давления, состоящий из изолирующих прокладок, между которыми в контакте с проводящими элементами сжимаемого объема находится реперное вещество, помещается чаще всего непосредственно в реакционное пространство (рис. 106). Давление в гидросистеме пресса, соответствующее началу полиморфного превращения, регистрируется в момент начала изменения электросопротивления датчика. Схема калибровки (рис. 107, а) разработки ВНИИСИМС, входящая в комплекс электрооборудования установки для кристаллизации алмаза, позволяет без разъединения 21 323 [c.323]

    Практически во всех случаях абсолютное значение А6° с повышением температуры уменьшается, что говорит об уменьшении прочности соединений стремлении их к диссоциации Зависимость А0° от температуры имеет вид степенного ряда, однако кривые приведенных диаграмм приближаются к прямым в тех пределах, где отсутствуют фазовые превращения металла или соли В точках плавления, кипения и аллотропического перехода эти прямые претерпевают излом и приобретают другой наклон Принимая в первом приближении величину АН° не за-Еисящей от температуры, легко показать, что угловой коэффициент каждого участка прямой приблизительно равен. отрицательному значению изменения энтропии д Аб°)/аГ = —А5 В соответствии с закономерностями изменения энтропии системы прямая претерпевает излом вверх при фазовом превращении металла и вниз при превращении соединения Изломы резче всего в точках кипения (из-за резкого изменения энтропии системы при образовании газовой фазы) В точках полиморфного превращения изломы незначительны [c.218]


Смотреть страницы где упоминается термин Металлы с полиморфными превращениям: [c.272]    [c.321]    [c.325]    [c.174]    [c.708]    [c.552]    [c.70]    [c.72]    [c.72]   
Машинный расчет физико химических параметров неорганических веществ (1983) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Иванов, JI. Н. Быстров. Исследование ползучести металлов методом кручения в области полиморфных превращений

Превращение полиморфное



© 2025 chem21.info Реклама на сайте