Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилендиаминтетрауксусная полярографическое

    Ранее определение бериллия было одной из весьма трудных задач, так как свойства ионов бериллия очень похожи на свойства ионов алюминия и ряда др. металлов, сопутствующих бериллию. Позже было найдено, что этилендиаминтетрауксусная кислота (трилон) почти не связывает бериллия, но дает очень прочные комплексы с алюминием и др. металлами . Это дало основание для разработки быстрых и точных методов определения бериллия. Маскирующие вещества широко и с успехом применяются для разделения металлов в весовом, фотометрическом, полярографическом, объемном и др. методах анализа. [c.108]


    Логарифм константы образования комплекса тория с этилендиаминтетрауксусной кислотой при 20"" и ионной силе, равной 0,1 (KN0.3 или КС1), найденный полярографическим методом, составляет 23,2 0,1 [1814]. Состав соединения, полученного при молярном соотношении тория к трилону Б 1 1, по-видимому, соответствует формуле [ThT в]. [c.66]

    В полярографическом анализе для переведения определяемых катионов в комплексные соединения пользуются самыми разнообразными веществами. Из неорганических комплексообразователей чаще всего применяют гидроокись аммония или пиридин (часто в смеси с их хлористоводородными солями), гидроокиси щелочных металлов, роданиды, иодиды, цианиды и др. Применяются и многие органические вещества винная и лимонная кислоты, этилендиамин, триэтаноламин, этилендиаминтетрауксусная кислота и ее соли (трилон Б) и др. [c.219]

    Амперометрическое титрование позволяет быстро определять многие катионы, даже если они не дают полярографических волн. Рабочими растворами служат растворы неорганических и органических осадителей или комплексообразователей, например, растворы ферроцианида калия, оксихинолина, купферона, диэтилди-тиокарбамата натрия, рубеановодородной кислоты, 1-нитрозо-2-наф-тола, этилендиаминтетрауксусной кислоты и др. Большинство этих веществ способно окисляться или восстанавливаться на электродах, и точку эквивалентности фиксируют по появлению тока после завершения основной реакции в растворе. Так, ионы магния. [c.260]

    Использование комплексонов в полярографии обещает многое. Исходя из того, что комплексоны образуют прочные комплексные соединения со многими катионами, можно ожидать существенных изменений в ходе восстановления отдельных катионов, из которых некоторые, связанные в комплекс, могут восстанавливаться только вне области поляризации капельного электрода, т. е. могут полярографически совсем не открываться, например никель, кобальт, марганец и цинк, связанные в комплекс с комплексоном И1, в среде аммиака и хлорида аммония восстанавливаются при потенциале более отрицательном, чем ион аммония [80]. Для характеристики отдельных комплексонов необходимо знать потенциалы выделения отдельных комплексных соединений металлов при различных pH. В этом направлении были исследованы, и то не полностью, нитрилотриуксусная кислота, этилендиаминтетрауксусная кислота и 1,2-диаминоциклогексан-1Ч, N, N, N -тетрауксусная кислота. [c.144]

    Диаминоциклогексан-N, IST, N, К -тетрауксусная кислота ведет себя во всех случаях аналогично этилендиаминтетрауксусной кислоте поэтому здесь не будут приведены методы исследования свойств ее комплексных соединений. В общем можно сказать, что ее константы устойчивости (см. табл. 10) примерно на один-три порядка выше, чем у этилендиаминтетрауксусной кислоты. Установление равновесий в растворах комплексных соединений протекает относительно медленно. Полярографические потенциалы полуволны комплексных соединений приведены в табл. И. [c.83]


    При исследовании комплексонов значительную роль играют реакции вытеснения, в которых происходит вытеснение одного комплексообразователя другим (стр. 50—52) или одного связанного в комплекс катиона другим (стр. 76). Второй случай является основным полярографическим методом определения констант устойчивости комплексонов, но он может быть также использован для анализа. Из полярографически невосстанавливающихся комплексонатов можно вытеснять в аммиачном растворе связанные с ними ионы. Когда применяются ионы кальция, этот способ как будто противоречит законам о равновесии в растворах комплексных соединений, так как вытесненные катионы образуют более устойчивые комплексы с этилендиаминтетрауксусной кислотой, чем кальций. Этот сдвиг равновесия объясняется, однако, присутствием в растворе аммиака, так как в результате вытеснения ионов из комплексоната образуются не свободные катионы, а соответ- [c.233]

    Ароматические аминокислоты являются сильно поверхностно-активными и понижают полярографические максимумы. Они могут быть определены косвенно вследствие их способности образовывать комплексы с металлами, особенно с медью ч Таким образом, аминокислоты определяли после хроматографического разделения их на бумаге. Максимум подавляли крахмалом . Метод был также применен для определения алифатической аминокислоты —этилендиаминтетрауксусной кислоты в ее продажной натриевой солн"  [c.487]

    В полярографическом анализе для переведения определяемых катионов в комплексные соединения пользуются различными веществами. Из неорганических лигандов чаще всего применяют водный раствор аммиака или пиридин (часто в смеси с их хлоридами), гидроксиды щелочных металлов, роданиды, иодиды, цианиды. Применяют и многие органические вещества винную и лимонную кислоты, этиленди-амин, триэтаноламин, этилендиаминтетрауксусную кислоту и ее соли (ЭДТА) и др. [c.505]

    Полярографическое определение кобальта в рудах и концентратах [142] на фоне пиридинового буферного раствора. Навеску анализируемой руды обрабатывают концентрированными соляной и азотной кислотами и удаляют последние выпариванием с раствором хлорной кислоты. К су.хому остатку добавляют воду, 6 мл концентрированной соляной кислоты, 10 мл пиридина и раствор разбавляют водой до 100 мл (pH раствора 6,4). К 10 мл полученного раствора прибавляют 1 мл 1%-ного раствора желатины, разбавляют до 25 мл 0,5 М раствором трика-лиевой соли этилендиаминтетрауксусной кислоты, вводят около [c.182]

    Полярографические токи, определяемые скоростью диффузии и скоростью химической реакции дезактивации продукта обратимой электрохимической реакции, наблюдались при анодном окислении аскорбиновой кислоты и других соединений с еидиоловой группировкой [138—140[, при восстановлении иоиов марганца [761 и комплекса ионов двухвалентной ртути с этилендиаминтетрауксусной кислотой в ирисутствии ионов магния [146]. Для всех этих случаев, кроме последнего, не были известны нормальные потенциалы редокс-системы деполяризатора — первичный продукт электрохимической реакции ( ), и поэтому нельзя было определить значение константы скорости дезактивации. Большой интерес представляет случай, описанный недавно Корытой и Забранским [147] для этого случая применимо уравнение (139) и известно Указанные авторы нашли, что при анодном окислении амальгамы кадмия в буферной среде, содержащей этилендиаминтетрауксусную кислоту (Н4У), происходит дезактивация образующихся С(1 + анионами НУ . При подстановке в уравнение (139) вместо к величины [НУ- ] для ц = 0,1 и 25" было получено значение константы скорости комплексообразования /г,.= 8,5-10 моль" -л-сек -. [c.371]

    Косвенные методы основаны на введении в раствор так называемого индикаторного вещества, дающего полярографическую волну. Примером такого определения может служить титрование ионов кальция раствором трилона в присутствии ионов цинка. На ртутном капельном электроде кальций восстанавливается трудно не дает в этих условиях полярографической волны также этилендиаминтетрауксусная кислота. Но если титровать кальций трилоном в присутствии ионов цинка в аммиачной среде при потенциале, соответствующем предельному току аммиаката цинка, вначале титрования гальванометр показывает ток восстановления ионов цинка прибавление трилона к анализируемому аммиачному раствору не [c.261]

    Диаминоциклогексантетрауксусная кислота образует, как видно из табл. 11, с кальцием и магнием нормальные комплексные соединения МеУ -, которые по своей устойчивости превосходят аналогичные комплексные соединения этилендиаминтетрауксусной кислоты. Из всех известных до настоящего времени—это наиболее прочные комплексы, образуемые этими катионами. Остальные двух-и трехзарядные катионы также образуют с этой кислотой весьма стойкие комплексы, что было установлено их полярографическим исследованием. Более подробно сведения по этому вопросу приведены в главе, посвященной полярографии. Остальные изомеры, именно 1,3-и 1,4-диаминоциклогексантетрауксусная кислоты, образуют менее стойкие комплексные соединения, чем аналогичные кислоты, производные триметилендиамина и тетраметилендиамина. [c.37]


    W h e e г w г i g h t E. J., Spedding F. H., S с h w a r z e n b a с h G., Потенциометрический и полярографический методы измерения констант стабильности комплексов редких земель с этилендиаминтетрауксусной кислотой, J. Ат. hem. So ., 75, 4196 (1953). [c.311]

    Аналогичным способом были изучены также комплексные соединения двухвалентного и трехвалентного ванадия с этилендиаминтетрауксусной кислотой [50]. Путем полярографического исследования равновесий в реакциях вытеснения (см. стр. 75) и из алкалиметрических кривых титрования были определены константы Гуну и jElviihy, после чего стало возможным, зная окислительно-восстановительный потенциал системы, определить константу KyiiiY. [c.70]

    Совершенно отличным является полярографическое поведение комплексов этилендиаминтетрауксусной кислоты, восстановление которых приводит только к изменению степени окисления, но никоим образом не к выделению металлов. В этом случае всегда образуются полярографические волны. Полярографическое восстановление комплекса с ионом трехвалентиого железа в. области pH до II имеет обратимый характер, т. е. катодная волна восстановления этого комплекса имеет потенциал полуволны, аналогичный анодной волне окисления комплекса с двухвалентным железом до трехвалентного [55]. До pH 11 потенциал полуволны этих волн имеет то же значение и ту же зависимость от pH раствора, как и определенный потенциометрически потенциал такой же системы с одинаковой величиной общей концентрации восстановленной и окисленной форм (уравнение 2,58). При высших значениях pH волна приобретает вытянутую форму и становится необратимой. Комплексное соединение четырехвалентного титана восстанавливается обратимо по уравнению [c.72]

    Реакцию обмена между ионами меди и кадмия в комплексном соединении с этилендиаминтетрауксусной кислотой исследовали Аккерман и Шварценбах [80]. Они смешали раствор, содерл ащий большую концентрацию комплекса кадмия, с раствором, содержащим меньшую концентрацию медной соли, и при постоянном потенциале диффузионного тока полярографически регистрировали изменение во времени концентрации свободных ионов меди. Из зависимости отдельных констант скорости от концентрации составных частей реакционной смеси и pH они установили, что хотя главной реакцией является [c.97]

    Для характеристики отдельных комплексонов необходимо знать потенциалы выделения комплексных соединений различных металлов при разных значениях pH. В этом направлении были исследованы нитрилтриуксусная кислота, этилендиаминтетрауксусная кислота и 1,2-диаминоциклогексан- , Ж, К, №-тетраук-сусная кислота. Полярографическое поведение комплексонатов было подробно разобрано на стр. 71—77, где читатель также найдет таблицы с соответствующими потенциалами полуволн [c.221]

    Комплекс кадмия с этилендиаминтетрауксусной кислотой дает в умереннокислом растворе кинетическую полярографическую волну, образующуюся вследствие диссоциации комплекса. Эта волна в присутствии избытка этилендиаминтетрауксусной кислоты плохо измерима. Поэтому Танака и сотрудники [34] работали с избыточным количеством ионов кальция в полярогра-фируемом растворе, вследствие чего сдвигалось равновесие в растворе комплекса в сторону выделения свободного иона кадмия и кинетические токи значительно повышались. Способом, методически несколько отличным от описанного в работе [3], но и менее точным, они установили константу скорости образования комплекса  [c.538]

    Нами также исследовано полярографическое поведение бериллия в присутствии комплексообразующих агентов, таких, как тартрат, нитрилотриуксусная кислота, этилендиаминтетрауксусная кислота, пирофосфат, а также этиленди-аминбисалкилфосфино1вые кислоты, комплексы бериллия с которыми описаны нами ранее в работе, проведенной совместно с Кабачником и Медведь [14]. Все эти комплексообразователи являются слабыми кислотами, поэтому их можно записать в общем виде как Н Ь. Полная концентрация бериллия тогда записывается в виде [c.326]


Смотреть страницы где упоминается термин Этилендиаминтетрауксусная полярографическое: [c.69]    [c.29]    [c.538]    [c.235]    [c.85]    [c.78]    [c.525]    [c.534]    [c.203]    [c.5]    [c.121]   
Поверхностноактивные вещества и моющие средства (1960) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Этилендиаминтетрауксусная МС и мыл



© 2025 chem21.info Реклама на сайте