Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

коррозионное растрескивание коррозия в водных растворах

    Если 20—30 лет тому назад учение о коррозии охватывало преимущественно процессы самого окисления металлов, главным образом в водных растворах, то в настоящее время обнаружен целый ряд явлений, где химическое действие среды сочетается с механическими и другими физическими воздействиями на металл в процессе его службы (влияние среды на усталостную прочность металла, коррозионное растрескивание, коррозия при ударе струи жидкости и т. д.). [c.3]


    ИЛИ В аэрированных растворах, содержащих ионы, которые образуют комплексы с медью (например, СЫ , ЫН4), может наблюдаться значительная коррозия. Для меди характерна также коррозия в быстро движущейся воде или водных растворах, которая носит название ударной коррозии (рис. 19.1). Ее скорость возрастает с увеличением концентрации растворенного кислорода. В обескислороженной быстро движущейся воде, по крайней мере вплоть до скорости движения 7,5 м/с, ударная коррозия незначительна. В аэрированной воде коррозия усиливается с ростом концентрации С1 и уменьшением pH [1 ]. Свободная от кислорода медь с высокой электрической проводимостью, а также электролитически рафинированная медь практически стойки к коррозионному растрескиванию под напряжением (КРН). Однако раскисленная фосфором медь, содержащая всего 0,004 % Р, подвержена этому виду разрушений [2]. [c.327]

    Коррозионно-активные среды. К ним относятся некоторые газы, вода, многие водные растворы (различные электролиты), расплавы солей и т. п. Эти среды вызывают или химическую или электрохимическую коррозию, понижающую пластичность, прочность и выносливость стали. В этих средах может наблюдаться растрескивание стали [132, 18, 165, 126, 44]. [c.14]

    Кроме того, стальные конструкции, находящиеся в среде сероводорода или некоторых сульфидов, могут подвергаться воздействию сульфидной коррозии под напряжением, называемой сероводородной болезнью . Это явление заключается в растрескивании стальных конструкций при совместном действии растягивающих напряжений и коррозионной среды — водного раствора сульфидов или сероводорода, а также просто влажного сероводорода. [c.84]

    По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС. [c.26]


    Водные среды. В нейтральных растворах хлоридов титановые сплавы не подвергаются коррозии при комнатных температурах и гладкие образцы сплавов, чувствительных к растрескиванию, при статической нагрузке не подвергаются разрушению. Для зарождения трещины необходимо, чтобы защитная окисная пленка на сплавах нарушалась и ее залечивание не имело места. Если такое нарушение пленки происходит, тогда коррозионное растрескивание наблюдается на сплавах, чувствительных к этому виду разрушения. Следовательно, вид испытания и тип образца, примененного в каком-либо отдельном опыте, являются важными факторами, особенно для сплавов, показывающих низкую чувствительность к растрескиванию. [c.274]

    Раствор аммиака. Водные растворы аммиака вызывают гораздо более быструю коррозию сплавов Си — N1, чем растворы гидроокисей металлов. Сплавы Си—-N1 корродируют в 2н. растворе аммиака со скоростью порядка 0,025—0,050 см год при комнатной температуре. Увеличение содержания никеля повышает коррозионную стойкость этих сплавов. Сплав 70 /о Си - -+ 30 io № очень стоек против коррозионного растрескивания в растворах аммиака. [c.209]

    Коррозия на действующих установках очистки газа. Абсорберы обычно не корродируют, хотя в литературе и имеются сообщения о случаях коррозионного растрескивания под напряжением в абсорберах на ряде установок очистки водными растворами этаноламина. [c.53]

    В нейтральных (водных) растворах хлоридов титановые сплавы не подвергаются коррозии при комнатной температуре, если поверхностная защитная оксидная пленка материала не нарушена. Если же нарушение оксидной пленки происходит, то у сплавов, склонных к коррозионному растрескиванию, следует ожидать развития коррозионного дефекта. Впервые коррозионное растрескивание в водных растворах было из ено на примере сплава Ti—7А1—2Nb, испытанного в растворе поваренной соли на образцах с предварительно нанесенной усталостной трещиной при консольном нагружении в условиях плоской деформации. Испытания были проведены при напряжениях ниже К - Развитие трещины в образцах продолжалось до тех пор, пока задаваемый коэффициент интенсивности напряжений К а а с ) не достигнет Ki . График зависимости коэффициента К от времени до разрушения т р приведен на рис. 1.4.21. Значение К, ниже которого растрескивания не происходит, обозначено на рис. 1.4.21 как параметр Отношение iifi /A i.s показывает чувствительность сплавов к коррозиоЕшому растрескиванию. Для сплавов, чувствительных к растрескиванию, эта величина находится на уровне 0,2. [c.78]

    Интенсивность коррозии отпарных колонн из углеродистой стали в системах очистки гликоль-аминами и водными аминами изменяется в широких пределах в зависимости от условий работы. Высокая температура регенерации, особенно при водных растворах аминов, резко усиливает коррозию. Водные растворы амина обычно вызывают более интенсивную коррозию отпарных "колонн чем гликоль-аминовые растворы. При этём корродирует металл как в я идкой, так и паровой среде, особенно интенсивно ниже уровня ввода раствора. Коррозионное растрескивание под напряжением в абсорберах проявляется чаще в аппаратах, которые не были подвергнуты отжигу для снятия напряжений. [c.51]

    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    Изменение строения двойного слоя, связанное с повышением общей концентрации электролита, приводит к уменьшению толщины двойного слоя и увеличивает, следовательно, градиент поля при постоянной величине электродного потенциала. По-видимому, с этим обстоятельством связан подбор опытным путем в качестве модельного электролита для ускоренных испытаний стали на коррозионное растрескивание насыщенного раствора Mg l2 [58]. Увеличение концентрации водного раствора НгЗО монотонно снижает время до разрушения закаленной стали (см. рис. 58), хотя концентрационная зависимость скорости общей коррозии имеет два максимума. Это явление можно объяснить адсорбционным эффектом Ребиндера и усилением избирательности коррозии, т. е. локализацией растворения под действием напряжений. При максимальных напряжениях ниже предела текучести скорость общей коррозии [c.170]


    Изменение строения двойного слоя, связанное с повышением общей концентрации электролита, приводит к уменьшению толщины двойного слоя и увеличивает, следовательно, градиент поля при постоянной величине электродного потенциала. По-видимому, с этим обстоятельством связан подбор опытным путем в качестве модельного электролита для ускоренных испытаний стали на коррозионное растрескивание насыщенного раствора Mg l2 [64]. Увеличение концентрации водного раствора Н2504 монотонно снижает время до разрушения закаленной стали, хотя концентрационная зависимость скорости общей коррозии имеет два максимума. Это явление можно объяснить адсорбционным эффектом Ребиндера и усилением избирательности коррозии, т. е. локализацией растворения под действием напряжений. При максимальных напряжениях ниже предела текучести скорость общей коррозии высокопрочных сталей увеличивается всего в несколько раз [22], а коррозионное растрескивание наступает быстро, что обусловлено локализацией растворения напряженного металла. В опытах [132] с концентрированной серной кислотой поверхность стали не имела следов коррозии, хотя образцы растрескивались в течение нескольких минут. По-видимому, под влиянием одновременно действующих кислоты высокой концентрации и механических напряжений происходят локализация коррозии, адсорбционное понижение прочности (эффект Ре- биндера) и, следовательно, повышение склонности к коррозионному рас- трескиванню. [c.172]

    После очередного скачка в трещине работает активная коррозионная гальваноПара, где анод - СОП по месту микронадрыва, а катод - стенки трещины, которым отвечает стационарный потенциал по месту бывшей СОП, По истечении периода активности СОП, характеризуемого временем t, работа гальванопары угасает. Рассмотрим развитие трещины коррозионного растрескивания углеродистых сталей в 3 %-м водном растворе Na l. Анализ процессов, протекающих в трещине (см. рис, 6), дает возможность предположить следующее в моМент скачка происходит механический микронадрыв металла в вершине трещины по месту, ослабленному водородным охрупчиванием, в результате чего трещина подвигается на величину А / , После скачка трещины на величину Д/м возникает СОП, на которой усиленно протекает анодный процесс, вследствие работы гальванопары с электродами СОП - бывшая СОП, а также реализуется подкисление нейтральной среды в связи с гидролизом Продуктов коррозии. Последнее способствует протеканию катодного процесса частично с водородной деполяризацией. Активный локальный анодный процесс по всему фронту СОП после скачка ведет к расширению трещины, а также ее коррозионному продвижению на величину Д /к в глубь металла. При этом чисто коррозионное расширение трещины не превышает 2А / . [c.90]

    Высокая коррозионная стойкость белых слоев обусловлена более дисперсной структурой металла и более электроположительным его состоянием защищая металл от коррозии, белый слой по сути функционирует как защитное катодное покрытие. Установлено, что сплошные белые слои на поверхности стали эффективно повышают сопротивление деталей к коррозионному растрескиванию и коррозионной усталости. Нанесение сплошных белых слоев повышает выносливость закаленных и низкоотпущеняых углеродистых, а также легированных сталей в 3 %-м водном растворе Na l почти в 10 раз, а в атмосфере (влажность 90 %) почти вдвое. [c.113]

    Установлено, что нанесение цинксиликатных покрытий повышает предел коррозионной усталости стали в синтетической (3 %-м водном растворе Na l) и натуральной морской воде практически до уровня предела коррозионной усталости на воздухе, Эти покрытия весьма эффективны и при заицгге металла от корроэионного растрескивания. Есть основание считать, что эффективность указанных покрытий при коррозии под напряжением в значительной степени связана с их протектирующим воздействием на защищаемый металл [46,47], [c.123]

    Как в водных, так и в метанольных растворах галоидные ноны и водород предположительно относятся к опасным компонентам. Высокотемпературное солевое коррозионное растрескивание происходит прерывисто и тем самым условия для растрескивания являются неустановивщимися отмечается торможение процесса распространения трещины. Результаты [189] указывают на то, что опасные компоненты получаются из твердых продуктов коррозии. Было показано, что скорость диффузии этих продуктов находится в сильной зависимости от количества присутствующей воды и происходит более быстро в среде с высокой влажностью. Было показано также, что некоторые характерные черты коррозионного растрескивания в газообразном НС1 [146] и во влажном хлоре 166] подобны высокотемпературному солевому коррозионному растрескиванию. В продуктах коррозии высокотемпературного солевого коррозионного растрескивания были определены водород и НС1газ, но не СЬ [146]. [c.402]

    За счет высокой коррозионной стойкости детали арматуры из титана (корпуса, втулки, штоки, сальники, золотники) противостоят коррозии в 15—26 раз дольше, чем нержавеющие стали (Х18Н9Т). Коррозионные свойства сплава АТ-3 испытаны во многих средах, в том числе в среде, содержащей раствор серной кислоты при 350 °С. В течение длительного времени при испытаниях в условиях радиации на образцах сплава не было признаков коррозии, а также коррозионного растрескивания под напряжением. Высокой коррозионной стойкостью сплав обладает в едком натре, в водном растворе аммиака, в азотной, хлорной, уксусной кислотах и средах, содержащих серу при 50 °С. [c.74]

    Нержавеющие стали подвержены точечной коррозии. Цирконий, титан и сплавы на их основе являются- наиболее корроэи-ониостойкимн материалами в этой среде, однако стойкость титана снижается при аэрирований раствора (прн концентрации р-ра 25% и температуре 100 С). Б аэрируемых растворах не рекомендуется также применять моиель-металл. В водных растворах соль подвергается гидролизу с об разованием соляной кислоты, поэтому углеродистые стали, латуин. алюминий подвергаются интенсивней общей и местной коррозии. В горячих концентрированных раст.ворах хромоникелевые стали под напряжением подвержен коррозионному растрескиванию. Никельхромовые сплавы при повышенных температурах ие. проявляют склонности к коррозионному растрескиванию. Возможна местная коррозия сталей и никелевых спла.вов. [c.809]

    В водных растворах солн алюминиевые сплавы подвержены точечной корро> ЗИН, иногда даже скввзной-В условиях аэрации рао твора коррозионная стойкость медн и никеля при температурах >100° С значительно снижается. При наличии в растворе окислителя латуни склонны к коррозионному растрескиванию под напряжением. Хромистые стали и сталь Х18Н9Т в растворе 45% (ЫН4)2804-Ь5% НзЗО при температуре >60 С совершенно нестойки. Имеются сведения о высокой коррозионной стойкости никель-медных сплавов типа мо-нель-металла в растворах соли любой концентрации до температуры кнпення. Вследствие гидролиза. олн с повышением температуры усиливается опасность мест-нвй коррозии железа и сталей. [c.811]

    В разд. 2.4 восстановление ионов водорода описано как одна из основных катодных реакций, кото происходит при коррозии металлов в водных растворах. Шкясольку выделения водорода следует ожвдать при катодной полафйзации металла, то иногда трудно себе представить, что такая реакция возможна в условиях анодной поляризации тйл не менее подобные наблюдения — ч,астое явление при локализованных коррозионных процессах, которые рассматривались в этой главе питтинге, коррозионном растрескивании, коррозионной усталости. Подобные местные катоды мб возникнуть вследствие разности потенциалов, существующих менс поверхностью образца и внутренним элементом, доступ к которому затруднен,. Это, также часто связано с пассивными металлами. В о их случаях большую роль играют также наблюдаемые изменения pH (часто, яо не всегда в сторону подкисления). [c.208]

    Закономерности, такие, как зависимость от вида и концентрации агрессивных анионов, температуры, близость значений Е т и потенциала коррозионного растрескивания -Яц, р, Яцит и потенциала межкристаллитной коррозии мкк установленные для этих видов коррозии в водных растворах, справедливы и для органических сред. [c.343]

    На основе имеющихся сведений по стойкости к общей коррозии и опытных данных по коррозионному сероводородному растрескиванию в содержащих H2S водных растворах и 97% растворах ДЭГ сталь Х17Н13МЗТ можно рассматривать как один из наиболее надежных конструкционных материалов для блоков абсорбции и регенерации ДЭГ при температуре не выше 50 °С. [c.286]

    Особенно сильно корродируют углеродистая и хромоникелевая (Х18Н9Т) сталь под действием сероводорода. Так, Никифорова и Решеткина [62] обнаружили, что в насыщенном водном растворе сероводорода стали марок Ст.З и Х18Н9Т совершенно непригодны для работы в напряженном состоянии. Сообщается также о результатах исследования [63, 64] коррозионного растрескивания углеродистой стали в аммиачной воде, применявшейся для отмывки СОа. Установлено, что коррозия этой стали имеет межкри-сталлитный характер и вызывается, главным образом, сероводородом и цианистоводородной кислотой. [c.310]

    О питтинговой коррозии титана подробно говорится ниже, но значительное преимущество титана по устойчивости к этому виду коррозионного разрушения убедительно иллюстрируется рис. 3. Титан не подвергается перепассивации, поэтому титан стоек в концентрированной азотной кислоте и в кислотах, содержащих сильные окислители. Титан не подвержен межкристаллитной коррозии в водных растворах. Склонность к коррозионному растрескиванию у титана меньше, чем у сталей. [c.32]

    Коррозии более всего подвержены углеродистые стали. Так, скорость коррозии Ст.З в водном растворе МЭА почти в 100 раз выше, чем нержавеющей стали 1Х18Н10Т [12]. Целесообразно избегать сочетания в одном технологическом аппарате разных сталей, способных создавать гальваническую пару. Важным является соблюдение оптимального гидравлического режима движения потока абсорбента в технологических аппаратах, особенно в трубчатых теплообменниках, поскольку нарушение этого режима вызывает снижение статического давления в их трубках и десорбцию коррозионно агрессивных КГ из абсорбента [17]. Необходимо также следить за стресс-коррозией (коррозионным растрескиванием под напряжением) аппаратов и трубопроводов, наблюдаемой на большинстве промышленных установок аминной очистки газа, особенно газа с повышенным содержанием СО2 [65]. [c.28]

    Входные линии установок по подготовке газа обычно подвергаются защите ингибитором, применяемым для защиты оборудования добычи газа, и дополнительный ввод ингибитора здесь предусматривается только при выявлении активизации коррозионных процессов. Как правило, ингибиторный раствор постоянно вводят в технологическую линию установок по подготовке газа после сепараторов первой ступени и периодически — в выходные линии. Кроме того, на установках по подготовке газа практикуется применение других специфических методов ингибиторной защиты. Это периодическая (1—2 раза в полугодие) закачка в аппараты и емкости после их отглушения и снятия давления концентрированного ингибиторного раствора, выдержка его в течение не более 1 ч для создания устойчивой защитной пленки и последующего слива. Возможно применение в местах усиленной коррозии, обычно в застойных зонах, обработки в период планово-предупредительных ремонтов концентрированными ингибиторами с пониженными технологическими (низкой растворимостью в водных углеводородных растворах и повышенной вязкостью) и повышенными защитными свойствами или обычно применяемыми ингибиторами в комплексе с загустителями, При осушке газа диэтиленгликолем возможно использование периодического (ежедневного) в небольших количествах (до 10 л) ввода концентрированного ингибитора в котел регенерации. Для предотвращения растрескивания при очистке газа рекомендуется периодический ввод ингибитора в оборудование, контактирующее с регенерированными растворами этаноламинов. [c.180]


Смотреть страницы где упоминается термин коррозионное растрескивание коррозия в водных растворах: [c.811]    [c.315]    [c.306]    [c.55]    [c.7]    [c.635]    [c.102]    [c.70]    [c.306]    [c.121]    [c.130]    [c.52]    [c.53]    [c.180]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозионное растрескивание под

Растрескивание в растворах водных

Ток коррозии коррозионный

коррозия в растворах

коррозия коррозия в водных растворах



© 2025 chem21.info Реклама на сайте