Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ток коррозии коррозионный

    Отмеченные коррозионно-активные компоненты перерабатываемой нефти способны вызывать практически все виды коррозионных разрушений общую и локализованную коррозию, коррозионное растрескивание и др. [c.9]

    Одна из основных причин утечки нефтепродуктов из резервуара— коррозия. Коррозионные повреждения днища наземных резервуаров, а в заглубленных резервуарах и наружных стенок обнаруживаются, как правило, при утечке нефтепродукта. Для предотвращения коррозии днища резервуаров применяют дренаж, герметизацию основания и катодную защиту. Для противокоррозионной защиты резервуаров в нефтепродукты добавляют также ингибиторы коррозии, на внутреннюю поверхность резервуаров наносят лакокрасочные и полимерные покрытия. Разрабатываются противокоррозионные покрытия, армированные чешуйками стекла. [c.136]


    В условиях эксплуатации нефтеперерабатывающих заводов -имеют место различные формы коррозионного разрушения металла точечная (питтинговая), щелевая, межкристаллитная коррозия, коррозионное растрескивание, усталостная коррозия, коррозия при трении, эрозия. Для относительной оценки коррозионного поведения металлов используется десятибалльная шкала коррозионной устойчивости табл. 3.85). [c.341]

    По окончании испытаний в растворах по методам А, АМ, В образцы извлекают из реакционного сосуда, промывают, просушивают и загибают на угол 90° С. При загибе образцов в тисках радиус закругления губок или оправки должен быть равен 3 мм при толщине образцов до 1 мм при толщине образцов от 1 до 3 мм он не должен быть более 3-кратной толщины образца, а при толщине образцов свыше 3 мм он должен составлять 10 мм. Качество поверхности изогнутых образцов оценивают с помощью лупы при увеличении 8—10 раз. Наличие поперечных трещин на поверхности изогнутого образца (исключая трещины непосредственно на кромках) является браковочным признаком. Если такие трещины обнаруживают, то испытание повторяют на двойном количестве образцов той же партии. Если и в этом случае даже на одном из образцов при его изгибе образуются поперечные трещины, металл считается не выдержавшим испытание на межкристаллитную коррозию. Для литья и металла сварного шва браковочным признаком является наличие поперечных трещин, отличающихся от трещин, обнаруженных на образцах, изогнутых до испытания. Наличие в сварных образцах ножевой коррозии (коррозионного разрушения, напоминающего острый надрез ножом) также является браковочным признаком. [c.452]

    Типы коррозионных процессов. Часто одни и те же типы коррозионных разрушений металла могут быть вызваны разными процессами коррозии. Коррозионные процессы бывает трудно отнести только к какому-либо определенному типу, так как они нередко происходят одновременно (атмосферная коррозия). По природе гетерогенных процессов взаимодействия окружающей среды с металлами эти процессы можно разделить на два основных типа. [c.506]

    Характерно, что по второму методу (ГОСТ 20449-75), оценивающему химическую коррозию, коррозионная активность дистиллятов деструктивных процессов значительно выше (в 1,4...11 раз) и находится на одном уровне с гидроочищенным дизельным топливом с серой 0,50 (3,96 г/м ). Синергетический эффект при этом наблюдается для балансовой смеси керосино-газойлевых фракций каталитического крекинга и коксования коррозионная активность КГФ вторичных процессов ниже коррозионной активности каждого из составляющих ее компонентов (легкий и тяжелый газойли). [c.84]


    Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Ее-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи [c.88]

    В условиях обводнения протекают процессы электрохимической коррозии. Коррозионную агрессивность топлив оценивают стандартным методом ГОСТ 18597—73, включенным в комплекс методов квалификационных испытаний. Измеряют убыль массы металлической пластинки, находящейся в топливе, в условиях, обеспечивающих конденсацию воды. В двухстенную испытательную колбу 3 (рис. 24) наливают 60 мл топлива. На площадку 6, температура которой поддерживается 30+1,0°С для бензинов и реактивных топлив и 50+1 °С для дизельных топлив, помещают металлическую пластинку 5, колбу закрывают пришлифованной пробкой У с гидравлическим затвором, который обеспечивает проведение исследований при нормальном давлении. Внутри колбы имеется специальный желобок 4, куда наливают дистиллированную воду, испаряющуюся в ходе испытаний и создающую внутри испытательной колбы 100%-ную влажность. Продолжительность испытаний 5 ч. Критерием оценки служит убыль массы металлической пластинки, выраженная в г/м . Сходимость определений составля- [c.78]

    Виды коррозии. Коррозионные процессы, протекающие при применении топлив, возникают в разных условиях, вызываются различными причинами и различаются по механизму развития, хотя в конечном итоге они приводят к одному и тому же результату — сокращению срока службы топливоперекачивающей аппаратуры или емкостей, топливной аппаратуры двигателей и снижению надежности агрегатов в целом.  [c.179]

    Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности. [c.4]

    Сюда также относятся металлы, становящиеся пассивными в пассивирующих растворах, такие как железо в растворах хро-матов. Металлы и сплавы этой группы обладают склонностью к значительной анодной поляризации. Выраженная анодная поляризация уменьшает наблюдаемые скорости реакции, так что металлы, пассивные по определению 1, обычно подчиняются и определению 2, основанному на низких скоростях коррозии. Коррозионные потенциалы металлов, пассивных по определению 1, достигают катодного потенциала разомкнутой цепи (т. е. потенциала кислородного электрода) и поэтому как компоненты гальванического элемента они демонстрируют потенциалы, близкие к потенциалам благородных металлов. [c.71]

    Самопроизвольно протекающий процесс разрущения металлов в результате взаимодействия с окружающей средой, происходящий с выделением энергии и рассеиванием вещества (рост энтропии), называется коррозией. Коррозионные процессы протекают необратимо в соответствии со вторым началом термодинамики (см. гл. 6). [c.505]

    Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание. [c.14]

    ТЕОРИЯ КОРРОЗИИ. КОРРОЗИОННАЯ СТОЙКОСТЬ МЕТАЛЛОВ И СПЛАВОВ [c.1]

    При коррозионном растрескивании под напряжением в слабо кислых средах, которое вызывается выделяющимся водородом, электрохимическая защита в общем случае не может дать эффекта [2]. Для пояснения этого на рис. 2.20 представлены кривые срок службы — потенциал для углеродистой стали в среде, содержащей сероводород [75]. При pH = 4 стойкость при катодной поляризации действительно заметно повышается (в некотором узком диапазоне потенциалов в результате образования поверхностного слоя Ре5). Однако для длительного защитного действия этот эффект не может быть использован. По результатам измерений видно также, что по мере снижения потенциала, стойкость (по времени до разрушения) уменьшается. Анодная защита от коррозионного растрескивания под напряжением, вызываемого водородом, теоретически возможна, но нерациональна, поскольку при этом усилится равномерная поверхностная коррозия. Коррозионное растрескивание под напряжением под влиянием водорода в углеродистых и низколегированных сталях обычно может развиваться только в присутствии стимуляторов, которые не допускают рекомбинации выделившихся на катоде атомов водорода в молекулы На, вследствие чего в структуру материала может внедриться (диффундировать) повышенное количество водорода (см. рис. 2.1). К числу таких стимуляторов могут быть отнесены, например, гидриды элементов 5 и 6 групп Пери- [c.75]


    С повышением температуры растворов хлоридов снижается устойчивость пассивного состояния нержавеющих сталей при наличии внешних или внутренних механических напряжений возникает наиболее опасный вид коррозии — коррозионное растрескивание. Коррозионное растрескивание является сложным и специфическим процессом, которому подвержено большинство промышленных сплавов. Основными причинами коррозионного растрескивания являются локализация коррозионного процесса на поверхности и наличие достаточно высоких (более 0,2—0,3(То,2) растягивающих механических напряжений. [c.34]

    Коррозионная агрессивность атмосферы для основных групп металлов и способов подготовки поверхности определяется числом, временем и интенсивностью воздействия климатических факторов, которые стимулируют процесс атмосферной коррозии. Коррозионная агрессивность атмосферы охарактеризована в табл. 8 1 см. гл. 12). [c.23]

    Практика показывает, что наиболее часто разрушение деталей компрессорных машин происходит при несоответствии условий эксплуатации заданным, при недостаточно высоком качестве применяемого для изготовления материала (низкой его стойкости к межкристаллитной коррозии, коррозионному растрескиванию), а также при несоблюдении требований к конструкции с точки зрения коррозии. [c.6]

    При условии р авномерной коррозии коррозионную стойкость металлов оценивают по потере массы (количество металла, разрушенного коррозией). Коррозионная стойкость определяется по ГОСТ 9.908—85 толщиной разрушенного металла (проницаемость). При менее точной оценке коррозии руководствуются группами стойкости материала, а при более точной — баллами по десятибалльной шкале коррозионной стойкости металлов, приведенной ниже  [c.6]

    Изменение метеорологических условий и наличие в воздухе частичек морских солей способствует выпадению на поверхности металла агрессивных агентов, которые разрушают существующие на нем защитные пленки и ускоряют процесс коррозии. Коррозионная стойкость металлических поверхностей зависит также от характера атмосферы. Скорость коррозии железа в морской атмосфере равна 60—70 жкл/год, в промышленной — 40— 160 мкм/тоц. Цинк, свинец, медь, никель в морских условиях корродируют медленнее, чем в промышленных, причем скорость коррозии цинка в первом случае колеблется в довольно широких пределах — 2,4—15,3 жкл/год. [c.6]

    Поступление кислорода. Кислород принимает участие в катодной реакции и поэтому его присутствие является предпосылкой для коррозии в почве. Содержание кислорода сравнительно высоко над уровнем грунтовых вод и значительно ниже под ним. Оно также изменяется с типом почвы, например в песке оно велико, а в глине -ниже. При этом содержание кислорода значительно выше в мелкогранулированной почве, которая была взрыхлена, например в процессе земляных работ, чем в почвах, находящихся в нетронутом, естественном состоянии. Если протяженная конструкция, например трубопровод, пересекает два или более типа почв, например песок и глину, имеющие различные характеристики в отношении проникновения кислорода, то может образоваться концентрационный элемент, а именно, элемент дифференциальной аэрации (рис. 52). В таком элементе анод расположен там, где подвод кислорода затруднен, и там наблюдается описанная выше локальная коррозия. Коррозионные элементы по той же причине могут возникать там, где конструкция окружена смешанной почвой, содержащей, например куски глины. Под этими кусками, в местах их соприкосновения с металлом будет происходить образование питтингов (рис. 53). Концентрационный элемент может также образоваться на конструкции, пересекающей уровень грунтовых вод, поскольку выше этого уровня проникновение кислорода происходит легче, чем ниже его. Поэтому локальная [c.51]

    Многочисленные примеры котельной коррозии. Коррозионное растрескивание на-гартованной латуни. Усиленная коррозия морских судов в местах концентрации напряжений, Коррозия в местах изгибов железных листов, Коррозия головок заклепок [c.21]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    Расчеты коррозионно-механической стойкости и долговечности /2/, механокоррозионной прочности /3/ и механохимической повреждаемости металла /4/ позволяют, достаточно точно оценить ресурс большинства аппаратов, трубопроводов и других металлических конструкций и определить пути повышения их работоспособности в условиях о6ш ей коррозии, коррозионного растрескивания и коррозионной устаюсти, независимо, механический 1[ли коррозионный фактор определяет скорость и характер их разрушения. [c.300]

    Обработку металлов в процессе изготовления аппаратуры следует проводить с учетом явлений наклепа, который возникает в результате пластических де р-маций и влечет за собой изменение механических свойств. Для углеродист <х сталей явление наклепа обнаруживается при температурах ниже 650— 700 °С, особенно опасен интервал 200—300 °С. Наклепанный металл обладает пониженными пластическими свойствами и повышенной прочностью, твердостью. С углеродистой стали наклеп снимается нагревом при 650—700 G. Опасность наклепа заключается также в том, что в наклепанном металле более активно развиваются процессы старения, коррозии, коррозионного растрескивания. [c.175]

    Большинство металлов подвержено местному виду коррозионного разрушения межкристаллитной коррозии, питтингу, избирательной коррозии, коррозионным растрескиванию или усталости и др. Считается, что характер коррозионного разрушения зависит от взаимного раоположения анодных и катодных участков в процессе коррозии. При постоянном их расположении коррозионные разрушения имеют ярко выраженный местный характер. [c.8]

    Коррозионностойкие стали подразделяются на хромистые, хромоникелевые, хромомарганцевые и хромомарганцевоникелевые стали. По структуре коррозионностойкие стали могут быть аустенитно-го, ферритного, аустенито-ферритного, мартенситного и мартенсито-ферритного классов. Наиболее опасными видами коррозии коррозионностойких сталей являются питтинговая, язвенная и щелевая коррозии в кислых и в нейтральных растворах хлоридов, межкристаллитная коррозия, коррозионное растрескивание в горячих растворах хлоридов. [c.69]

    Под коррозией понимают физико-химическое или химическое взаимодействие между металлом и средой, приводящее к ухудшению функциональных свойств металла, среды или включающей их технической системы. Химическое взаимодействие определяет, главным образом, химическую коррозию, характеризующуюся непосредственным взаимодействием реагирующих частиц металла и среды без возникновения электрического тока. Физикохимическое взаимодействие характерно для электрохимической и механо-химической коррозии, сопровождающейся возникновением электрического тока (ток коррозии). При механо-химической коррозии (коррозионно-меха-ническом изнашивании) электрохимические процессы накладываются на механическое взаимодействие трение, напряжение, циклическое давление и др. В зависимости от вида коррозийной среды и условий протекания коррозионного процесса различают около 40 видов коррозии атмосферная, газовая, подземная, биокоррозия, контактная, коррозия при трении, щелевая и др. [c.365]

    Для заш,иты от коррозии на поверхности металла искусственно создают окисные. окиснохроматные, фосфатные, сульфидные и другие пленки обработкой изделий сиециальными химическими составами. Широко применяют анодное окисление путем электролиза в кислой среде в присутствии окислителей. Скорость кислотной коррозии уменьшают введением в кислоту замедлителей (ингибиторов) коррозии. Коррозионная стойкость железа повышается введением легирующих добавок (нержавеющие стали содержат добавки Сг, N1 и других металлов). [c.328]

    Установлено, что введение в латунь небольших количеств мыщьяка (примерно 0,001—0,06%) заметно снижает ее склонность к обесцинкованию [9]. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью. Основными из них являются оловянная латунь Л070—1 и алюминиевая латунь ЛА77—2. Благоприятное действие на латунь оказывает также олово (до 1%), которым часто легируют сплавы, содержащие 70% меди и 29% цинка. Этот сплав обладает высокой коррозионной стойкостью в минерализованных водах, однако он подвержен коррозии под напряжением и общей аммиачной коррозии. Коррозионная стойкость латуней возрастает также при присадке к ним алюминия (около 2%), сурьмы и фосфора (по 0,5%). Однако сплавы с этими добавками не нашли широкого применения. При выборе материала конденсаторных трубок в зависимости от степени минерализации охлаждающей воды следует руководствоваться данными табл. 4. [c.53]

    Как и язвенная коррозия, коррозионное растрескивание под напряжением происходит преимущественно на пассивированных металлах в пределах области критических потенциалов. На уровень предельных потенциалов кроме специфических свойств материалов и сред оказывают влияние также вид и величина механических нагрузок. Съем металла (потеря массы) при коррозионном растрескивании под напряжением может быть чрезвычайно малым или даже равным нулю. Разрушение может развиваться вдоль границ зерен (межкристаллитно) или через зерна (транскристаллитно). [c.71]

    Учет коррозионного износа стенок газопроводов, транспортирующих среды, содержащие сероводород, обычно производили путем увеличения толщины стенки на 3 мм для неосушенных сред и на 2 мм для осушенных по сравнению с номинальными толщинами для неагрессивных сред. Однако эти величины не являются обоснованными, так как базируются на понятии максимальная допустимая скорость коррозии в предположении постоянства этой величины во времени, что не соответствует реальным условиям эксплуатации. Действительно, несущая способность стенки трубопровода, подвергаемой воздействию общей коррозии (коррозионное растрескивание в присутствии сероводорода исключается соответствующим выбором состава и термообработки стали и определяется достижением предельного допускаемого значения напряжения, которое для газопромысловых трубопроводов в зависимости от кате гор ийности трубопровода составляет 0,3— 0,5а,г), определяется действующими напряжениями. Динамика изменения напряженного состояния в стенке трубопровода зависит от изменения как силовых нагрузок (давления), так и толщины стенки вследствие ее коррозионного износа. В свою очередь изменение механических напряжений в стенке вызывает изменение скорости коррозионного износа. Неучет реальной динамики этих процессов при назначении толщины стенки может привести либо к занижению запаса толщины на коррозионный износ, либо к неоправданному ее завышению и перерасходу металла. [c.243]

    Свежеприготовленный строительный раствор является щелочным и потому коррозивным по отношению к алюминию. Во избежание появления на его поверхности протравленных пятен, ее нужно защищать от брызг раствора. При строительных работах можно, например, укрывать алюминиевые части листами пластика или наносить на поверхность алюминия покрытие из легко снимаемого лака или ленты. Алюминиевые поверхности, находящиеся в контакте со свежим бетоном, например обшивки фронтонов, подоконники, вначале подтравливаются, но вскоре приобретают покрытие из алюмината кальция, которое защищает против дальнейшей коррозии. Коррозионные повреждения могут, однако, возникнуть, если бетон порист или конструкция спроектирована так, что алюминиевая поверхность многократно подвергается воздействию щелочной воды из бетона. [c.123]

    С помощью коррозионных исследований можно установить эффективность различных методов защиты металлов от коррозии. Коррозионные исследования бывают лабораторные, натурные и эксплуатационные. Лабораторные исследования проводят на образцах небольших размеров. Обычно это металлические пластины размером 50X25 мм или цилиндры диаметром 10— 20 мм и высотой 40 мм. Условия проведения испытаний выбирают предварительно и результаты оценивают количественно, например гравиметрическим методом. В большинстве случаев исследования проводят ускоренно, т. е. при усиленном воздействии отдельных факторов температуры, концентрации и движения или перемешивания среды и т, д. [c.36]

    Конструкция оборудования, работающего в коррозионной среде, должна предусматривать возможность защиты от локальных видов коррозии, таких как контактная, щелевая, язвенная, струевая. Выбираемые материалы не должны быть подвержены селективно-избирательным видам коррозии (коррозионное растрескивание, питтинговая и язвенная коррозия, межкристаллитная коррозия). Назначение уровня действующих нагрузок должно производиться с учетом допустимых пределов по коррозионно-механической прочности материалов. [c.80]


Смотреть страницы где упоминается термин Ток коррозии коррозионный : [c.71]    [c.287]    [c.355]    [c.385]    [c.7]    [c.14]    [c.43]    [c.422]    [c.13]    [c.4]    [c.8]    [c.17]    [c.20]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.291 ]




ПОИСК





Смотрите так же термины и статьи:

Борьба с коррозией при помощи добавок к коррозионной среде

Бронза алюминиевая, кавитационная эрозия коррозионное растрескивание коррозия в морской воде

ВЫБОР ПОКАЗАТЕЛЯ КОРРОЗИИ И МЕТОДА ОЦЕНКИ КОРРОЗИОННОЙ стойкости Изменение массы образцов (весовой метод)

Виды коррозии и коррозионных повреждений

Виды коррозии и механизм коррозионных процессов

Виды коррозии коррозионно-стойких сталей и их сварных соединений

Виды коррозионных разрушений и методы исследования коррозии

Влияние замедлителей коррозии на коррозионно-усталостную прочность стали

Вольфрам, коррозионная стойкость коррозия в атмосфере

Вторичные коррозионные реакции. Продукты электрохимической коррозии

Глава I. Понятие о коррозии металлов и сплавов Коррозия и коррозионные разрушения металлов

Защита металлов от коррозии обработкой коррозионной среды

Значение продуктов коррозии свинца в развитии коррозионного процесса

Золото, коррозионная стойкость различных средах коррозия в газах при высоких температурах

Иридий, коррозионная стойкость коррозия в газах при высоких

Иридий, коррозионная стойкость температурах коррозия в расплавленных солях

Испытания на коррозионное растрескивание, ударную коррозию и коррозионную усталость

КОРРОЗИОННЫЕ И ЗАЩИТНЫЕ СВОЙСТВА , СМАЗОЧНЫХ МАТЕРИАЛОВ Химическая и электрохимическая коррозия. Энергетические взаимодействия в системе нефтепродукт — ПАВ — электролит— металл — воздух

КОРРОЗИЯ В ВОДЕ И ВОДЯНОМ ПАРЕ Коррозионная агрессивность водных сред

КОРРОЗИЯ И КОРРОЗИОННАЯ СТОЙКОСТЬ НЕОРГАНИЧЕСКИХ СТРОИТЕЛЬНЫХ И ФУТЕРОВОЧНЫХ МАТЕРИАЛОВ

КОРРОЗИЯ И КОРРОЗИОННАЯ СТОЙКОСТЬ ОРГАНИЧЕСКИХ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ В СТРОИТЕЛЬСТВЕ

Кадмиевые покрытия как способ борьбы с коррозионной усталостью коррозия

Кинетика изменения напряжений и скорости коррозии трубопроводов под действием постоянного давления коррозионных сред и продольной силы

Количественная и качественная оценки коррозии и коррозионной стойкости

Контактная коррозия коррозионный ток пары

Контроль коррозии и методы определения сопротивления материалов коррозионному растрескиванию

Коррозионная активность сред влияние на коррозию металло

Коррозионная активность сред и влияние ее на коррозию металлов

Коррозионное растрескивание при коррозии с кислородной деполяризацией

Коррозионное растрескивание, теория локальные потенциалы коррозии

Коррозионные испытания Качественные методы оценки коррозии

Коррозионные процессы с кислородной деполяризацией Коррозия металлов с кислородной деполяризацией и ее термодинамическая возможность

Коррозия Коррозионная стойкость важнейших конструкционных материалов

Коррозия Погуляй, О. А. Жукова. Коррозионная стойкость материалов в производстве ялана

Коррозия и коррозионная стойкость древесины под действием j некоторых химических соединений

Коррозия и коррозионная стойкость древесных материалов

Коррозия и коррозионная стойкость неметаллических материалов

Коррозия и коррозионностолкие металлы Основные понятия Коррозия и коррозионная стойкость

Коррозия под напряжением коррозионная усталость

Коррозия под статическим напряжением. Коррозионное растрескивание

Коррозия рения и сплавов на основе ниобия Томашов, Т. В. Матвеева. Коррозионное и электрохимическое поведение рения

Коррозия скорость и коррозионный потенциал

Коррозия. Виды коррозии, методы испытаний и способы предотвращения коррозионных повреждений

Краткие сведения о коррозии металлов и современные представления о коррозионной усталости

Метод расчета распределения потенциала и тока контактной коррозии под тонкой пленкой коррозионной среды

Методика исследования атмосферной коррозии металлов во влажных субтропиках и коррозионная активность их районов

Методы коррозионных испытаний и стойкость трубных сталей к различным видам коррозии

Молибден, коррозионная стойкость различных средах коррозия в атмосфере

НЕКОТОРЫЕ СПЕЦИФИЧЕСКИЕ МЕТОДЫ j УСКОРЕННЫХ КОРРОЗИОННЫХ ИСПЫТАНИЙ Определение склонности сплавов к межкристаллитной коррозии

Общие положения Виды коррозии стальных подземных трубопроводов и критерии коррозионной опасности

Общие представления о коррозии под напряжением Общая характеристика коррозионно-механического разрушеНекоторые аспекты механики коррозионного разрушения

Определение времени до появления первого коррозионного очага или площади, занятой коррозией

Определение коррозии и значение коррозионной проблемы

Определение, причины, механизм и морфология корроПрямые показатели коррозии и коррозионной стойкости

Осмий, коррозионная стойкость коррозия в газах при высокой

Основные виды коррозии и коррозионных разрушений

Основы теории коррозии и методы ускоренных коррозионных испытаний металлов

Особенности работы коррозионных пар при почвенной коррозии

Особенности работы коррозионных элементов и протекания процесса коррозии с кислородной деполяризацией

Оценка влияния вторичных явлений на скорость коррозии и глубину коррозионных разрушений

Оценка стойкости по времени до появления первого коррозионного очага или определенной площади коррозии

Питтинговая коррозия коррозионной среды

Подсмольная вода, коррозионностойкие по отношению к ней материалы температуры на коррозию коррозионное разрушение

Подшипники, влияиие катализаторов температуры на коррозию коррозионное разрушение

Понятие коррозии, основные виды коррозионных повреждений металлов и сплавов

Применение ингибиторов коррозии для защиты промыслового оборудования в коррозионно-агрессивных водных и двухфазных средах

Применение коррозионной диаграммы для анализа процессов коррозии

Причины коррозии. Деформируемые и литейные сплавы и термическая обработка. Влияние компонентов и примесей. Межкристаллитная коррозия и коррозия под напряжением. Контактная коррозия. Сверхчистый алюминий. Плакирование алюминиевых сплавов. Защита металлизацией. Коррозионные испытания. Предупреждение коррозии. Ингибиторы коррозии. Естественная окисная пленка. Искусственные оксидные пленки. Твердость пленок Защитные свойства. Особые вопросы коррозии МЕТОДЫ ЭЛЕКТРОЛИТИЧЕСКОГО И ХИМИЧЕСКОГО ПОЛИРОВАНИЯ

Родий, коррозионная стойкость коррозия в расплавленных солях

Родий, коррозионная стойкость различных средах коррозия в газах при высоких температурах

Рутений, коррозионная стойкость коррозия в газах при высокой

Рутений, коррозионная стойкость температуре коррозия в расплавленных солях

Сведения по коррозии и коррозионной стойкости металлов

Сведения по коррозии и коррозионной стойкости металлов. . о Химическая (газовая) коррозия металлов

Связь между коррозионной усталостью и коррозией ненапряженного металла

Сквозная коррозия и коррозионное растрескивание

Скорость контактной коррозии коррозионной реакции

Скорость коррозии металла и коррозионный потенциал

Теория межкристаллитной коррозии и коррозионного растрескивания алюминиевых сплавов

Тип коррозионного разрушения сварных соединений хромоникелевых сталей (ножевая коррозия)

Томашев , Чернова Коррозия и коррозионно-стойкие сплавы

Условия повышения коррозионной с тонкости, виды коррозии и области применения нержавеющих сталей

Условия повышения коррозионной стойкости, виды коррозии и области применения нержавеющих сталей и сплавов

Условные обозначения КР коррозионное растрескивание МКК межкристаллитная коррозия ПК питтинговая коррозия структура, выявленная травлением

Физико-химические предпосылки селективной коррозии в s А в S в I S S. б Коррозионные процессы на сплавах

Формирование коррозионной при коррозии сплавов гомогенных гетерогенных

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний

Хромовые покрытия декоративные диффузионные защитные как способ борьбы с коррозионной усталостью коррозия при высокой температуре

Цинковые покрытия как способ борьбы с коррозионной усталостью коррозия

Часть И. ПОЧВЫ И ГРУНТЫ КАК КОРРОЗИОННАЯ СРЕДА КОРРОЗИОННЫЕ ИССЛЕДОВАНИЯ И ИЗМЕРЕНИЯ Влияние состава и свойств почв и грунтов на развитие процесса коррозии

Чугун, кавитационная эрозия коррозионная стойкость различных средах коррозия в атмосфере коррозия в морской воде

Электрохимические основы действия ингибиторов кислотной коррозии стали Кинетика коррозионных процессов в присутствии ингибиторов Дрожжин, А. М. Сухотин

испытания точечную коррозию классификация коррозионные испытания коррозия

коррозионное растрескивание коррозия в атмосфере способы защиты

коррозионное растрескивание коррозия в водных растворах

коррозия оловянистая замедлители коррозии кавитационная эрозия коррозионное растрескивание

латуни на контактную коррозию на коррозионную усталость

предел коррозионной с молибденом и железом коррозия в морской воде

предел коррозионной с молибденом коррозия в газах коррозия

предел коррозионной усталости с молибденом коррозия в газах коррозия

предел коррозионной усталости химический состав коррозия в растворах щелоче

предел коррозионной усталости химический состав растворах кислот коррозия в растворах солей

сплавов меди катодная защита коррозии коррозионные испытания коррозия в охлаждающих системах



© 2025 chem21.info Реклама на сайте