Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дыхание связь с брожением

    У анаэробных микроорганизмов акцептором водорода могут служить молекулы органических веществ с ненасыщенными связями. Такой тип дыхания называется брожением. Среди конечных продуктов брожения всегда имеются не полностью окисленные вещества, и обычно типы брожений получают свое название по конечным продуктам  [c.128]


    СВЯЗЬ МЕЖДУ ДЫХАНИЕМ И БРОЖЕНИЕМ [c.235]

    Природу спиртового брожения как тип анаэробного дыхания впервые установил Луи Пастер. Это дыхание энергетически ме-чее выгодно, чем аэробное, так как при разложении 1 грамм-молекулы сахара на спирт и углекислоту выделяется 28 ккал, а при сжигании до углекислоты и воды—674 ккал. Именно поэтому дрожжи при брожении расщепляют во много раз больше сахара для получения такого же количества энергии, что и используется практикой. Однако и в том и другом случае дыхание связано с размножением дрожжей, которое является обязательным процессом проявления их жизнедеятельности. Перемена типа дыхания с анаэробного на аэробный называется пастеровским эффектом и до сих пор еще изучается. [c.242]

    B. И. Палладии, Н. Д. Прянишников, С. П. Костычев. Классическими являются работы Н. Д. Прянишникова по азотистому обмену в растениях. Появились знаменитые исследования С. П. Костычева по вопросу о генетической связи дыхания и брожения. В. И. Палладии разрабатывает свою классическую теорию дыхания в связи с проблемой активации водорода. Известный композитор и химик И. П. Бородин в своих исследованиях стремится связать воедино углеводный и азотистый обмен, которые до того рассматривались совершенно обособленно один от другого. [c.14]

    Дыхание и брожение представляют процессы освобождения энергии, накопленной при фотосинтезе. Существование взаимной связи между этими двумя явлениями впервые было установлено Пастером. Им же были указаны и две характерные черты этой связи 1) дыхание может заменяться брожением, например при отсутствии кислорода воздуха 2) брожение подавляется дыханием при доступе кислорода анаэробный обмен (брожение) исчезает и заменяется окислительным обменом (дыханием). [c.389]

    Этим различиям в энергетической эффективности дыхания и брожения соответствуют глубокие различия и в химизме обоих процессов. Дыхание, и брожение на каких-то этапах сходятся в одной общей точке. Оба эти процесса ведут к синтезу одного и того же соединения, а именно аденозин--трифосфорной кислоты (АТФ). Реакция распада АТФ высоко экзотермична . при отщеплении крайнего (терминального) фосфатного остатка освобождается 11000 кал. Следует подчеркнуть, что это относится только ко второму третьему фосфатному остатку, но не к первому, непосредственно связанному с аденозином (см. формулу АТФ). АТФ, накопляющая при обмене, например в мышцах, огромное количество энергии, считается важнейшим непосредственным источником ее для клетки вообще. АТФ играет исключительно важную роль на всем пути распада углеводов. Таким образом, энергия и дыхания, и брожения оказывается накопленной в АТФ в виде богатых ее ангидридных связей между молекулами фосфорной кислоты. [c.390]


    ПФЕФФЕРА, ТЕОРИЯ ГЕНЕТИЧЕСКОЙ СВЯЗИ ДЫХАНИЯ И БРОЖЕНИЯ КОСТЫЧЕВА) [c.254]

    В связи с изложенными выше данными уместно остановиться на вопросе о биологическом значении дыхания и брожения. Этот вопрос непосредственно связан с вопросом о влиянии кислорода на расходование углерода органического вещества в процессах энергетического обмена. [c.276]

    Сов. биохимик, физиолог растений и микробиолог, акад. АН СССР (с 1923). Р. в Петербурге. Сын русского почвоведа П. А. Костычева. Окончил Петербургский ун-т (1900), работал там же (с 1914 проф.). С 1923 директор Лаборатории биохимии и физиологии растений АН СССР и Гос. ин-та опытной агрономии (с 1930 Ин-т с.-х. микробиологии ВАСХНИЛ) в Ленинграде. Изучал химизм дыхания и брожения. Показал, что спиртовое брожение не является первой фазой дыхания (как считали до его работ), но оба эти процесса связаны общими [c.225]

    Кислород входит в состав вс/ды и многих соединений, поэтому поступает в клетки всегда в больших количествах. Однако значительная часть микроорганизмов нуждается в постоянном притоке молекулярного кислорода. Такие микроорганизмы принято объединять в группу облигатных аэробов. Энергетическим процессом, у них является аэробное дыхание, а молекулярный кислород играет роль терминального окислителя. Среди облигатных аэробов выделяют группу микроаэрофильных микроорганизмов, которые нуждаются в кислороде, но лучше растут при парциальном давлении Ог меньшем, чем в воздухе. Развитие других микроорганизмов, напротив, возможно только в отсутствие кислорода. Получение энергии у этих микроорганизмов не связано с использованием молекулярного кислорода. Для многих из них кислород токсичен — он угнетает рост или вызывает гибель клеток. Такие микроорганизмы называют облигатными анаэробами. Среди микроорганизмов выделяют также группу факультативных анаэробов, представители которой способны расти как в присутствии, так и в отсутствие молекулярного кислорода. Например, некоторые дрожжи или энтеробактерии в зависимости от наличия кислорода осуществляют аэробное дыхание или брожение. [c.57]

    Предложенная Г. Кребсом схема является дальнейшим развитием учения С. П. Костычева о генетической связи дыхания и брожения. [c.250]

    Таким образом, теория Костычева о генетической связи дыхания и брожения полностью подтвердилась. [c.130]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Окислительно-восстановительные реакции имеют большое значение в теории и практике. С ними связаны все жизненные процессы дыхание, обмен веш,еств, фотосинтез, гниение, брожение и т. д. Получение металлов, кислот, щелочей и многих других продуктов основано на окислительно-восстановительных реакциях. [c.124]

    Для лучшего размножения, а также активации ослабленных дрожжей необходима аэрация питательной среды, так как построение веществ протоплазмы новых молодых клеток связано с затратой энергии, получаемой дрожжами в процессе дыхания. Поэтому небольшое количество воздуха подают обычно в начале брожения. Процесс же спиртового брожения происходит в анаэробных условиях, и необходимую для жизнедеятельности энергию дрожжи получают в процессе брожения. [c.543]

    В процессе гомоферментативного молочнокислого брожения синтезируются 2 молекулы АТФ на 1 молекулу сброженной глюкозы в процессе дыхания при полном окислении молекулы глюкозы образуется 38 молекул АТФ. В обоих случаях эффективность запасания выделяющейся энергии в макроэргических связях АТФ приблизительно одинакова. [c.207]

    АТФ не только содержит значительное количество Н3РО4, но имеет также большой запас тепловой энергии в виде макроэргических связей, при разрыве которых освобождается примерно в 5 раз больше энергии, чем при разрыве простой связи. Эта энергия используется в различных обменных процессах, связанных с дыханием и брожением. [c.58]

    Действие ферментов в живой клетке. Протоплазма живой клетки вырабатывает ферменты, следовательно, они являются продуктами ее жизнедеятельности и с нею связаны. Ферменты могут проявлять свою деятельность внутри клетки, где они находятся, в этом случае их называют внутриклеточными, или эндоферментами. Они катализируют процессы синтеза веществ протоплазмы, дыхания и брожения. Ферменты могут также выделиться во внешнюю среду и там оказывать соответствующее действие (расщепление сложных веществ — белков, жиров). -Это так называемые внеклеточные, или экзоферменты. Но резкой грани между этими двумя группами провести нельзя. [c.523]


    Однако русский ученый В. О. Таусон показал, что для многих синтетических реакций, происходящих в живой протоплазме микробов, дыхательный процесс как источник энергии не нужен. Выделение углекислоты в ряде процессов также не связано с поглощением кислорода и с полным окислением питательных веществ, т. е. с процессом дыхания, а является результатом процесса, получивщего название анаэробного дыхания, или брожения. [c.527]

    Изучал химизм дыхания и брожения. Показал, что спиртовое брожение не является первой фазой дыхания (как считали до его работ), но оба этих процесса связаны общими промежуточными продуктами превращения углеводов. Установил, что дрожжи способны осуществлять реакцию Канниццаро с образованием спиртов и кислот, а грибок Aspergillus ni-ger — реакцию образования лимонной кислоты. Эти открытия послужили основой для разработки технических способов получения названных продуктов. Установил путь восстановления растениями нитратов до аммиака. Показал, что при фиксации атмосферного азота азотобактером образуется аммиак. Выяснил характер изменений фотосинтеза в течение суток. [107а] [c.259]

    Начало биохимическому подходу к изучению обмена веществ было положено исследованиями катаболизма и в особенности дыхания и брожения. При этом биохимики условились при изучении окислительно-восстановительных потенциалов обозначать окислительный потенциал как - -ие, тогда как физикохимики обычно обозначают окислительный потенциал как —ае. Подобным же образом, в термодинамике биохимиков интересует теплота сгорания тех или иных соединений и в качестве исходных продуктов они рассматривают продукты полного сгорания (СО2 и Н2О). Для физикохими-ков же исходным состоянием является состояние элементов при стандартных условиях. Таким образом, макроэргические соединения обладают сравнительно большой теплотой сгорания, но сравнительно малой теплотой образования. В этом смысле жиры и углеводы— это макроэргические соединения. Однако Липман использовал свой термин только применительно к тем соединениям, при гидролизе которых происходит значительное изменение свободной энергии. Поскольку, как оказалось, современные методы дают более низкие значения для свободной энергии гидролиза, в настоящее время наибольшее внимание уделяется ангидридосоединениям. Проблема анаболизма в значительной степени является проблемок создания ангидридных связей в водном окружении клетки. Процесс окислительного фосфорилирования, при котором из АДФ и неорганического фосфата (Фн) образуется АТФ, рассматривается в гл. 5, но здесь мы хотим обратить внимание читателя на возможное значение окислительного фосфорилирования в липидных мембранах митохондрий. [c.89]

    В молекулах аденозинди( юсфата и аденозинтри( юсфата ангидридная связь остатков фос( юрной кислоты чрезвычайно богата энергией. При гидролитическом расщеплении этих макроэргических связей энергия освобождается. Если простая сложноэфирная связь содержит запас энергии в 2000—3000 кал, то макроэргические связи содержат около 10 ООО—16 ООО кал. Соединения, содержащие макроэргические связи, в частности аденозиндифосфорная кислота и аденозин-трифос( )орная кислота, играют важную роль в обмене веществ. Большое значение этих соединений сязано с тем, что в макроэргических связях аккумулируется энергия, освобождающаяся при различных реакциях, происходящих в процессе дыхания и брожения. Под влиянием соответствующих ферментов фосфатные и другие группы, содержащие макроэргические связи, могут быть перенесены на другие вещества. Таким образом, энергия, накопившаяся в макроэргических связях, может быть использована далее в обмене веществ. [c.606]

    Имеется, однако, иная гипотеза [33, 36], согласно которой поглощенная световая энергия (или в крайнем случае часть ее) идет на синтез фосфорных эфиров с высоким запасом энергии последующее разложение фосфорных эфиров связано с эндергони-ческими окислениями — восстановлениями. Эта теория, исходящая из механизма утилизации энергии при дыхании и брожении, будет рассмотрена в главе IX, где будет показана ее необоснованность. Еще менее пригодна гипотеза Каутского [12], предполагающая, что световая энергия сперва накапливается в метастабильных кислородных молекулах (см. главу XVIII), позднее модифицируется замещением диссоциирующего кислородного комплекса на свободный кислород. [c.155]

    Очевидно, что в действии углеводов на фотосинтез проявляется несколько независимых явлений. Это действие зависит от вида растений, интенсивности света, температуры и прочих агентов. Кроме того, должна иметь значение форма, в которой накопляются углеводы. У растений, способных к превращению избытка углеводов в крахмал, можно ожидать меньшей склонности к депрессии фотосинтеза, чем у растений, образующих только сахара. Ввиду сильного влияния добавления сахаров на дыхание и брожение их действие на фотосинтез тесно связано с сочетанием этих процессов, как упоминалось выше в связи с данными Спбра, ван дер Паува и Гаффрона. К этому вопросу мы вернемся в главе XX, когда будем рассматривать отношение фотосинтеза к дыханию. [c.340]

    Эти реакции лежат в основе биологического окисления и, следовательно, связаны с процессами дыхания и брожения. В этот класс включаются ферменты, переносящие водород и электроны, катализирующие процессы биологического окисления. К ним относятся дегидрогеназы, оксидазы, цитохромредуктазы и перокси-дазы. Они отличаются друг от друга тем, что обладают специфическими коферментами и простетическими группами. В соответствии с этим они подразделяются по функциональным группам доноров, от которых принимают водород или электроны, и акцепторов, на которые они их переносят. [c.142]

    Бактерии, наход тся ли они в твердых тканях организма или в водной среде, всегда дышат, т. е. проявляют газовый обмен. Этот газовый обмен (дыхание или брожение) идет иногда очень энергично и бывает, что, размножаясь, бактерии пенятся. Это явление, например, известно для Ba illus в неопубликованных опытах Шперлинг и Казакова проведенных в связи с Биогеохимической лабораторией в 1939—1940 гг. [c.293]

    Утверждению о первичности фотосинтеза, как я думаю, не противоречит ничто из известного ныне. Мы почему-то связываем относительно позднее в эволюции биосферы Земли образование атмосферного кислорода (см. [49, 126, 1276, 228, 240, 250, 367, 452]) с эволюционным возникновением фотосинтеза. Это неверно. Кислород выделяется при фотосинтезе лишь у высших растений и водорослей. Выделение кислорода в значительных количествах отнюдь не было обусловлено тем, что этот газ столь нужен нам для дыхания. Кислород образовывался первоначально как неизбежный побочный продукт, экскрет , при радиационном фоторазложении воды. Лишь затем, по мере выработки механизмов запасания энергии в виде энергии связи органических молекул жиров, углеводов, белков возникла необходимость и стало возможным образование макроэргических пирофосфатов, сопряженное с процессами деградации пишевых молекул, т. е. процессами дыхания и брожения. [c.129]

    Процесс дыхания состоит нз двух основных этапов. Первый, начальный,— анаэробное дыхание, в результате которого дыхательный субстрат (углеводы) распадается до простейших продуктов тнпа пировиноградной кислоты. Дальше превращение пи-ровииоградной кислоты может проходить двумя путями кислородным до конечных продуктов СОг и Н2О или анаэробным по типу брожения. Таким образом, устанавливается определенная связь между дыханием и брожением. Учение о генетической связи между этими процессами было разработано С. П. Костычевым. Общую схему связи брожения и дыхания можно представить в таком виде  [c.245]

    П. Костычев экспериментально обосновал теорию о генетичёской связи дыхания и брожения. [c.452]

    АКЦЕПТОР (лат. a eptor — получатель). А. электронов в химии называют частицу, принимающую электроны. Это атом (ион) или группа атомов, принимающих электроны, образующие новую химическую связь, то есть выполняют функцию окислителя. В радиационной химии А. называют частицу, реагирующую со свободными радикалами, которые возникают а системе. В биохимии А.— вещество, принимающее от донатора (то же, что в химии донор) разные атомы или атомные группировки. Акцептирование водорода имеет важное значение в процессах дыхания и бролм-ния. Например, уксусный альдегид, принимая водород при спиртовом брожении, превращается в этиловый спирт (см. Координационная связь). [c.14]

    В уравнениях гЛказаны только конечные продукты. Эти процессы идут через ряд промежуточных этапов, причем они являются общими как для дыхания, так и для указанных видов брожения. Иногда в качестве катализаторов используются одни и те же ферменты. С энергетической точки зрения, наиболее эффективным является процесс дыхания, в котором выделяется наибольшее количество энергии. В клетке энергия используется в виде химической энергии макроэргических связей АТФ. [c.36]

    Для реализации биосинтеза и метаболизма необходима энергия, запасаемая в клетках в химической форме, главным образом в экзергонических третьей и второй фосфатной связи АТФ. Соответственно метаболические биоэнергетические процессы имеют своим результатом зарядку аккумулятора — синтез АТФ из АДФ и неорганического фосфата. Это происходит в процессах дыхания и фотосинтеза. Современные организмы несут память об эволюции, начавшейся около 3,5 10 лет назад. Имеются веские основания считать, что жизнь на Земле возникла в отсутствие свободного кислорода (см. 17.2). Метаболические процессы, протекающие при участии кислорода (прежде всего окислительное фосфорилирование при дыхании), относительно немногочисленны и эволюционно являются более поздними, чем анаэробные процессы. В отсутствие кислорода невозможно полное сгорание (окисление) органических молекул пищевых веществ. Тем не менее, как это показывают свойства ныне существующих анаэробных клеток, и в них необходимая для жизни энергия получается в ходе окислительно-восстановительных процессов. В аэробных системах конечным акцептором (т. е. окислителем) водорода служит Ог, в анаэробных — другие вещества. Окисление без Oj реализуется в двух путях брожения — в гликолизе и в спиртовом брожении. Гликолиз состоит в многостадийном расщеплении гексоз (например, глюкозы) вплоть до двух молекул пирувата (пировиноградной кислоты), содержащих по три атома углерода. На этом, пути две молекулы НАД восстанавливаются до НАД.Н и две молекулы АДФ фосфоршгируются— получаются две молекулы АТФ. Вследствие обратной реакции [c.52]

    Один из основателей молекулярной биологии в СССР. В ходе изучения закономерностей нревраще-ния фосфорных соединений в процессах клеточного обмена веществ обнаружил (1931) связь клеточного дыхания и фосфорилирования. Открыл (1939) аденозинтри-фосфатазпую активность миозина. Объяснил (1949) механизм сопряжения процессов брожения и дыхания (эффект Пастера). Осуществлял систематические исследования по химии и технологии производства витаминов и аденозинтрифосфорной кислоты. Изучает (с 1960) структуру и функции нуклеиновых кислот и ферментов биосинтеза белков. Организовал (1972—1973) исследование по обратной транскрипции — проект Ревертаза . Много внимания уделяет методическим и философским проблемам молекулярной и теоретической биологии. [c.596]

    Присутствие в природных водах растворенного углекислого газа связано прежде всего с процессами распада органического вещества при его окислении, брожении или гниении. Источниками растворенного СОз являются также дыхание водных организмов и выделение СОг в геохимических процессах. Поглощение СОз из атмосферы играет меньшую роль, так как в ней содержится всего 0,03%" СОз (рсо, = 0,0003 атл<). В соответствии с этим по закону Генри растворимость СОз в воде при 10" должна составлять Ссо, =2310-0,0003=0,69 мг/л. Фактическое содержание СОз в природных водах изменяется в широких пределах— от десятых долей до нескольких сотен мг/л. Из процессов, направленных на уменьшение содержания СОз в природных водах, важнейшими являются удаление его в атмосферу из-за пересыщенности им воды, расходование на растворение карбонатных пород, потребление зеленой растительностью в процессе фотосинтеза. [c.35]


Смотреть страницы где упоминается термин Дыхание связь с брожением: [c.36]    [c.561]    [c.646]    [c.611]    [c.170]    [c.256]    [c.353]    [c.135]    [c.269]    [c.76]    [c.137]   
Курс физиологии растений Издание 3 (1971) -- [ c.254 , c.256 ]

Физиология растений (1989) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Брожение

Брожения брожение

Дыхание генетическая связь с брожение

Дыхание тканевое, связь с брожение

Дыхание тканевое, связь с брожение углекислоты

Связь между дыханием и брожением



© 2025 chem21.info Реклама на сайте