Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рассеяние неупругое

Рис. 16.17. Фотоэлектронный спектр 1.5-электронов азота, возбужденного рентгеновским излучением KaMg. Основной пик при энергии связи 410 эВ представляет собой линию возбужденную излучением Ха 2 М . Спектр демонстрирует также линии, возбужденные сателлитами рентгеновского излучения, и линии, соответствующие встряхиванию и неупругому рассеянию на молекуле N2 [27]. Рис. 16.17. <a href="/info/142700">Фотоэлектронный спектр</a> 1.5-<a href="/info/27363">электронов азота</a>, <a href="/info/1745745">возбужденного рентгеновским</a> излучением KaMg. Основной пик при <a href="/info/5059">энергии связи</a> 410 эВ представляет <a href="/info/1795776">собой</a> <a href="/info/430804">линию возбужденную</a> излучением Ха 2 М . Спектр демонстрирует <a href="/info/927951">также линии</a>, возбужденные сателлитами <a href="/info/28163">рентгеновского излучения</a>, и линии, соответствующие встряхиванию и неупругому рассеянию на молекуле N2 [27].

    Неупругое рассеяние (неупругое столкновение) предполагает потери суммарной энергии сталкивающихся частиц. [c.300]

    Особенно интересна связь между полным яс1-сечением и 7гЫ-амплитудами. Полное сечение складывется из сечений следующих процессов упругого лё-рассеяния, неупругого яё-рассеяния с развалом дейтрона, реакции поглощения пд. - NN и, при более высоких энергиях, каналов с рождением пиона. [c.115]

    Нейтроны, будучи электронейтральными частицами, непосредственно не вызывают ионизации. Они взаимодействуют в основном с ядрами атомов, в результате чего происходят следующие процессы упругое рассеяние, неупругое рассеяние, рас-18  [c.275]

    Неупругое рассеяние. Неупругое рассеяние (л, л ), при котором нейтрон отдает часть своей энергии для возбуждения бомбардируемого ядра, может протекать только в [c.31]

    Нейтроны, будучи электронейтральными частицами, не могут произвести ионизацию. Они взаимодействуют в основном с ядрами атомов. При этом могут происходить следующие процессы [7, 8] упругое рассеяние, неупругое рассеяние, расщепление ядер с испусканием заряженных частиц (протонов, а-частиц и т. п.), деление ядра и радиационный захват. [c.19]

    Если рассеянный электрон только изменил направление движения и не изменил своей кинетической энергии (при этом, естественно, и атом также сохранил состояние до рассеяния), то процесс рассеяния произошел упруго (упругое рассеяние). Неупругое рассеяние возникает при изменении энергии как рассеянного электрона, так и рассеивающего атома. При рассеянии пучка электронов на атомах имеются оба вида рассеяния. Однако наиболее важной составляющей для структурных исследований является упругое рассеяние электронов, которое обеспечивает постоянство длины волны рассеиваемых электронов. Неупругое рассеяние электронов имеет меньший вклад при используемых высоких ускоряющих напряжениях 40... 60 кВ. [c.124]

    Здесь спектры представлены в дифференциальной форме, что помогает подавить проявление интенсивного фона вторичных электронов. Различие КЬЬ спектра углерода в случае карбидного и графитированного покрытий является одним из хорошо известных примеров определения химического состояния для ЭОС. Основные различия, однако, наблюдаются в положительной части спектра дифференциальных пиков. Основной пик всегда обладает крутым спадом со стороны более высоких энергий, что приводит к большему по амплитуде отрицательному пику в дифференциальном спектре. С другой стороны, если существует размытый спектр рассеянных неупругих электронов со стороны низких энергий, то в дифференциальном спектре положительный пик будет относительно мал. [c.81]


    Понижение диэлектрической проницаемости граничных слоев воды следует также из молекулярно-динамических оценок изменений вращательной подвижности диполей воды [4] п подтверждается исследованиями структуры воды в тонких прослойках методом неупругого рассеяния нейтронов и ЯМР. Так, для дисперсий кремнезема времена релаксации молекул воды в граничном слое 1 нм в 5—10 раз превышают объемные значения [39]. Методом электронного спинового резонанса показано, что подвижность спиновой метки снижается с уменьшением радиуса пор силикагеля от 5 до 2 нм [40]. [c.14]

    СПЕКТРОСКОПИЯ НЕУПРУГОГО РАССЕЯНИЯ НЕЙТРОНОВ [c.8]

    Для измерения микроскопического коэффициента самодиффузии в некоторых работах [622, 623] использовали метод неупругого рассеяния нейтронов (НРН). Время наблюдения для данного метода составляет 10 с. Полученные с помощью ЯМР и НРН величины Dos для граничной воды приблизительно на порядок ниже величин Dop для объемной воды [620]. [c.240]

    Дж. У. Релея) или упругим рассеянием. Однако существует вероятность (весьма малая), что помимо упругого рассеяния произойдет и неупругое рассеяние, при котором квант М сообщает молекул часть своей энергии, равную в результате чего молекула перейдет с [c.146]

    Спектроскопия комбинационного рассеяния (КР) — это раздел оптической спектроскопии, изучающий рассеяние монохроматического света, которое сопровождается изменением его частоты. Комбинационное рассеяние было открыто одновременно и независимо советскими физиками Л. И. Мандельштамом и Г. С. Ландсбергом и индийскими физиками В. Раманом и С. Кришнаном. Причина комбинационного рассеяния — неупругое соударение кванта света с молекулой. При этом часть энергии может уйти на возбуждение молекулы, которая перейдет на более высокий уровень. Тогда энергия рассеянного света будет меньше энергии падающего света на величину энергии перехода. В спектре рассеянного света кроме линии падающего света с волновым числом vo появляются линии с волновым числом Vlстоксовы линии). Энергия перехода характеризуется разностью Av,=vo —VI. Если молекула находилась в возбужденном состоянии, то при соударении с квантом света она может отдать ему свою энергию возбуждения и перейти в основное состояние. Тогда энергия рассеянного излучения возрастает и в [c.247]

    Радиационный захват и неупругое рассеяние — два других конкурирующих процесса с непроизводительной потерей нейтронов. Реакцию радиационного захвата (1.2) можно записать так  [c.14]

    Другой непроизводительный процесс — неупругое рассеяние — не приводит к потере нейтронов, а лишь снижает их кинетическую энергию. В рамках теории составного ядра процесс неупругого рассеяния представляется как захват ядром нейтрона при одной энергии и освобождение его при другой  [c.15]

    Однако составное ядро образуется не всегда некоторые реакции неупругого рассеяния могут протекать по схеме [c.15]

    Так называемое потенциальное рассеяние является процессом типа отклонения. Резонансное же рассеяние можно рассматривать с помощью модели составного ядра как реакцию неупругого рассеяния (1.19) в сравнительно узком интервале энергий падающего нейтрона [2, 4], в результате которого в бомбардируемом ядре не остается избыточной энергии. Энергия возбуждения оказывается равной нулю. [c.15]

    В первую очередь рассмотрим процессы неупругого рассеяния. Уже было отмечено, что при столкновении, которое сопровождается неупругим рассеянием, образуется составное ядро в возбужденном состоянии. Энергия возбуждения складывается из кинетической энергии падающего нейтрона и энергии связи этого нейтрона с ядром-мишенью. В случае легких ядер энергия возбужденного состояния составного ядра по энергетической шкале находится далеко от основного состояния — на расстоянии до 1 Мэе. Если масса бомбардируемой частицы большая, то первый уровень возбуждения располагается ближе к основному состоянию (от 10 до 100 кэв) и промежуточные состояния находятся па более близком расстоянии друг от друга, чем в легких ядрах [21. [c.48]

    В дальпе1шгем под общим понятием <(Сто.лкновение будем иметь в виду перечисленные взаимодействия нейтрона с ядрами. Когда речь идет о вероят-1шсти ядерного столкновения, иод этим подразумевается любой из четырех процессов захват, деление, упругое рассеяние и неупругое рассеяние. [c.25]

    Таким образом, неупругое рассеяние толь-  [c.49]

    Как и в случае нереагирующей смеси газов, наличие именно пяти независимых инвариантов связано с динамическими законами сохранения при столкновениях. Действительно, при парных столкновениях (и упругих, и неупругих) необходимо иметь шесть соотношений связи, определяющих скорости после столкновения через скорости до столкновения. Один из инвариантов (т,-) есть тривиальное выражение закона сохранения массы. Динамика процесса столкновения дает два соотношения (через прицельный параметр и угол рассеяния), вследствие чего должны существовать еще четыре независимых соотношения, которые и связаны с сохранением импульса (три соотношения) и энергии (одно соотношение). Любое другое число инвариантов сделало бы систему либо неопределенной, либо переопределенной. Разумеется, все сказанное непосредственно связано с выбранным нами типом частиц (бесструктурные частицы, характеризуемые только массой и внутренней энергией). При неупругих столкновениях таких частиц, хотя величина д (вектор относительной скорости) не равна д, последний может быть однозначно определен по его ориентации относительно д, поскольку нам известны энергии всех состояний. В случае частиц со структурой (т.е. многоатомных молекул) задача значительно усложнится, если рассматривать дополнительный инвариант столкновения — момент импульса [ 1811. [c.28]


    Рентгеновское и нейтронное рассеяние. Методы рентгепострук-турного и нейтроноструктурного анализа представляют собой дифракционные методы. Рентгеновские лучи — это электромагнитные волны большой энергии. Длины волн пх лежат в интервале от 0,05 до 0,20 нм. Нейтроны — незаряженные микрочастицы, обладаюплие массой покоя. Для пучков нейтронов соответствующие им длины волн лежат в пределах 0,1 —1,0 нм. Рентгеновское излучение рассеивается электронами атомов и молекул. Интенсивность рассеянного излучения фиксируется каким-либо способом и характеризует электронную плотность. Рассеяние рентгеновских лучей на ядрах оказывается пренебрежимо малым. В свою очередь, нейтроны рассеиваются ядрами атомов. При этом упругое рассеяние медленных нейтронов позволяет изучать атомную структуру вещества, а неупругое используется для изучения динамики частиц. Механизмы рассеяния рентгеновских лучей и нейтронов похожи. [c.101]

    Наиболее полную информацию о колебательном спектре молекулы С60 содержат данные о неупругом рассеянии медленных нейтронов [I], так как здесь возможно эффективное возбуждение всех типов колебаний молекулы независимо от их симметрии. Согласно анализу [13], из 174 возможных типов ко- [c.8]

    Фазовые сдвиги в общем случае являются комплексными величинами. Их мнимые части отвечают неупругим процессам, которые ведут к выбыванию частиц из упругого канала. В пион-нуклонном рассеянии неупругости появляются выше порога реакции rN - лл М. Поэтому фазовый сдвиг в яN-pa eянии является вещественным для значений кинетической энергии пиона ниже 170 МэВ в лабораторной системе. По-другому удобно записать в виде [c.26]

    Механическое поведение, соответствующее теории линейной упругости, — только приближенная модель поведения реальных горных пород. Даже в условиях быстрой нагрузки наблюдаются нарушения закона Гука. Один из таких примеров — затухание сейсмических волн, когда их амплитуда уменьшается по мере удаления от очага вследствие неупругого рассеяния энергии. Это явление наблюдается и в монокристаллах, но гораздо сильнее оно сказывается в поликристаллических агрегатах. Степень затухания выражается диссипативной функцией [c.87]

    Возникновение спутников основной частоты получило название комбинационного рассеяния (КР) света или эффекта Рамана (в зарубежной литературе). Оно было открыто независимо и одновременно советскими физиками Мандельштамом и Ландсбергом и индийскими физиками Раманом и Кришнаном. Вероятность неупругого столкновения мала, поэтому стоксовы линии слабые, интенсивность их в миллионы раз меньше релеевской, при фотографировании требуется длительная, часто многочасовая экспозиция. Еще более слабы ан-тистоксовы линии, так как вероятность сверхупругого рассеяния еще меньше (при низких температурах доля возбужденных молекул ничтожна). Сравнение интенсивности релеевской, стоксовой и антистоксовой линий приведено на рис. 68. [c.146]

    Упругое ш неупругое рассеяние оказывают значительное влияние на энергетическое распределение нейтронов, так как каждый из. чтих процессов приводит к уменьшению энергии нейтронов. Однако неунругое рассеяние существенно лишь при высоких энергиях нейтронов, от нескольких килоэлектронвольт и выше. Прр1 меньших энергиях определяющим в механизме замедления становится упругое рассеяние. [c.48]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Взаимодействие света с флуктуационными движениями среды приводит к нелинейному эффекту — модуляции световой волны, что эквивалентно появлению в спектре рассеянного света излучения новых частот. Это явление можно трактовать как неупругое рассеяние фотонов. Рассмотрение взаимодействия фотон-фонон (квант гиперакусти-ческого поля) приводит к известной формуле цля частоты линий триплета Мандельштама-Бриллюена  [c.9]

    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Методом характеристических потерь энергии электронами (Ер=200 эВ) с угловым разрешением изучена пространственная дисперсия плазмонов в графите в интервале квазиимпульсов 0-ь 16 нм . Спектры ХПЭ получены в ФТИ им. А.Ф. Иоффе РАН. Все эксперименты выполнялись с помощью многоканального электронного спектрометра с угловым разрешением [1] с оригинальным дисперсионным энергоанализатором типа коническое зеркало [2]. Угловое разрешение прибора по полярному углу 0 и азимутальному углу <р было одинаковым (1.5 х1.5"). Значения полярньсх углов 0, определялось с точностью 0.5 . Угол падения первичного пучка электронов на образец 0=50°. Углы сбора неупруго рассеянных электронов составляли 15-55". Анализатор работал в режиме постоянного абсолютного энергетического разрешения ДЕ=0.6 эВ и был настроен на энергию пропускания 30 эВ. Измерения проведены на образцах высокоориентированного пирографита (НОРС). Определение энергии л- и о-плазмонов проведено с использованием формализма Крамерса-Кронига [3]. Величина переданного импульса (q - это квазиимпульс л-электронов) определена по следующей формуле = , [c.48]

    Плоские графитовые монохроматоры применяются для исследований дифракционного и неупругого рассеяний нейтронов. При этом обеспечивается дифрация нейтронов в диапазоне длин волн 0,2-0,5 нм [7-6], что позволяет исследовать магнитные структуры, фононы в твердых телах, фазовые переходы и биологические системы. [c.458]

    Введение релаксационного спектра соответствует использованию интерлинга физики — теории колебаний для описания структуры и подвижности в полимерах. Пока мы говорили только, о макромолекуле, но тот же спектрометрический подход пригоден для любых полимерных тел с их сложной иерархией уровней структурной организации. Полезно бросить взгляд в обратном направлении , вернувшись от макромолекул к простым молекулам (детализацией — для упражнения — мы предлагаем заняться самим читателям). Как известно, они тоже располагают своими характеристическими спектрами, которые тоже выявляются при воздействии на них с разной скоростью только теперь это периодические воздействия и вместо времени воздействия мы вводим частоту V, впрочем, в квантуемых системах можно вернуться к импульсу и стрелке действия. При этом выявляется одна совершенно общая характеристика стрелки действия. Все релаксаторы (или осцилляторы — в оптическом диапазоне частот), расположенные в координатах д—х (х=1Н) слеза от стрелки действия, или Ха (см рис. 1.14), реагируют на воздействие неупругим образом, т. е. претерпевают внутреннюю перестройку, изменяют частоту и т. п. С п р а Б а от Тл ответ на воздействие упругий релаксаторы (или осцилляторы) не успевают отреагировать на воздействие в микромире это связано, например, с упругим рассеянием элементарных частиц в макромире, при достаточно больших силах и энергиях воздействия, это приводит к разрушению системы. [c.52]


Смотреть страницы где упоминается термин Рассеяние неупругое: [c.531]    [c.608]    [c.465]    [c.33]    [c.49]    [c.49]    [c.49]    [c.49]    [c.188]    [c.511]    [c.32]    [c.32]    [c.290]    [c.9]   
Динамика регулируемых систем в теплоэнергетике и химии (1972) -- [ c.551 ]

Нестехиометрические соединения (1971) -- [ c.57 ]

Аналитическая лазерная спектроскопия (1982) -- [ c.349 , c.353 , c.366 ]

Радиационная химия (1974) -- [ c.17 , c.50 ]

Биофизическая химия Т.2 (1984) -- [ c.449 ]




ПОИСК





Смотрите так же термины и статьи:

Вторичные электроны обусловленные неупругим рассеянием

Качественные динамические особенности . 4.7.3. Неупругости в нуклон-нуклонном рассеянии

Комбинационное рассеяние неупругое

Метод неупругого рассеяния нейтроно

Неупругого рассеяния функция

Неупругое рассеяние в воде

Неупругое рассеяние в ионных растворах

Неупругое рассеяние нейтронов

Неупругое рассеяние фотонов на фононаХ

Неупругое ядерное резонансное рассеяние

Обзор исследований по неупругому рассеянию нейтронов в ионных растворах

Процессы, обусловленные неупругим рассеянием

Рассеяние неупругое и поляризация

Рассеяние электронов атомами неупругое

Света рассеяние неупругое

Сечение рассеяния для неупругих столкновений

Спектроскопия неупругого рассеяния нейтронов

Функция плотности вероятности неупругого рассеяния

спектроскопия при скользящем неупругое рассеяние



© 2025 chem21.info Реклама на сайте