Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация напряжений испытания

    Зеленевым и Молотковым [73] рассчитаны непрерывные спектры (шестое приближение) для ряда слабо сшитых эластомеров по динамическим (периодические деформации) и по квазистатическим (релаксация напряжения) испытаниям. Дина.мические испытания охватывали область коротких времен, а квазистатические — область больших времен. Полученные непрерывные спектры приведены на рис. 4.16. [c.131]


    Испытания полимеров на релаксацию напряжений [c.53]

    Основные технические характеристики приборов для испытания полимеров на релаксацию напряжений приведены в табл. 5.2. [c.57]

    Но в области, соответствующей переходу изоляции из высокоэластического состояния в стеклообразное, в зависимости от соотношения скоростей двух конкурирующих процессов - скорости релаксации напряжения и процесса структурирования - характер изменения Ап для различных изоляционных материалов и условий испытания может быть иным. [c.41]

    Сейчас при контроле механических свойств материалов для испытаний на растяжение, сжатие, изгиб, скручивание, длительную прочность, ползучесть, релаксацию напряжений применяют громоздкое и дорогое механическое оборудование. Пределы прочности, текучести, упругости, относительного удлинения, ударной вязкости определяют на образцах выборочным путем. Но даже у материалов одной марки, плавки, партии механические характеристики могут разниться. Выход подсказывает применение магнитных коэрцитиметров, позволяющих оценивать качество термообработки, твердость и другие механические параметры через коэрцитивную силу ферромагнитного материала. Так проверяется качество углеродистых сталей и других содержащих железо сплавов после термообработки. [c.60]

    Динамические характеристики оптико-механических свойств полимеров в значительной мере мог т отличаться от статических из-за влияния временного фактора. Так, при действии кратковременных имульсных нагрузок процессы, связанные с регистрацией в модели оптической картины полос, длятся от нескольких микросекунд до сотен микросекунд. В этом случае обычные квазистатические испытания на ползучесть и релаксацию напряжения не могут отражать сути происходящих при динамическом воздействии явлений, протекающих в полимерном материале. [c.254]

    Чтобы учесть релаксационные свойства полимеров, необходимо найти связь между скоростью движения диффундирующей частицы V в уравнении (7.6) и параметрами модели, позволяющей описать термодинамические свойства полимеров и их реакцию на внешнее воздействие (динамическое и статическое). В качестве такой модели рассмотрим частный случай модели, представленной на рис. 5.2. Эта упрощенная модель представляет собой параллельное соединение двух элементов Александрова— Лазуркина, изображенное на рис. 7.1. Выбор такой модели диктуется тем, что она позволяет описать два перехода (а- и у-переходы), которые имеют место во всех полимерах при динамических испытаниях, основные особенности кривых релаксации напряжения (ползучести) и термодинамические свойства. [c.217]


    В процессе испытаний можно поддерживать постоянными указанные силовые факторы, а также скорости изменения осевой силы, гидростатического давления и крутящего момента. Машина может работать при постоянных значениях нагрузок (ползучесть) и деформаций (релаксация напряжений), а также при постоянной скорости нагружения и деформирования. [c.67]

    Следует указать также на весьма рациональный метод определения основанный на закономерной взаимосвязи усталостных и деформационных процессов в твердых телах. Можно допустить, что в области безопасного напряжения ползучесть и релаксация напряжения практически отсутствуют. Экспериментально это предположение проверялось на примере полиэтилена высокой плотности [26], а также (более обстоятельно) на образцах пентапласта марки БГ (ТУ 6-05-1422—74). Образцы, по форме соответствовавшие ГОСТ 11262—68 (тип 5), получали методом литья под давлением. Затем их подвергали термостатированию в течение 1 ч при 60 С с последующим медленным охлаждением до нормальной температуры. Испытания проводили на разрывной машине FM-500 при 20 °С. Осуществляли два типа экспериментов. В экспериментах первого типа для серии из 27 образцов определяли по ГОСТ 11262—76 предел текучести и соответствующую ему деформацию ёт, которую замеряли индикатором часового типа с точностью 0,01 мм. Скорость деформирования составляла 10 мм/мин. Безопасное напряжение с учетом выражения (5.168) вычисляли как [c.184]

    Следуя принятой схеме, рассмотрим релаксацию напряжения в одноосно растянутом образце, деформация которого в процессе испытаний сохраняется постоянной, причем е ет, т. е. сго Стт- Начальная стадия нагружения сопровождается сравнительно быстрой перегруппировкой межмолекулярных связей. Со временем скорость релаксации этого типа снижается и начинается второй, основной релаксационный процесс, обусловленный вязким течением и разрывом растянутых молекулярных цепей [188, 196]. Кроме механических факторов на ско- [c.210]

    Рнс.5.4.1. Образец для испытаний на релаксацию напряжений [c.118]

    Предложенный эмпирический подход к описанию нелинейных вязкоупругих свойств материала ограничен двумя обстоятельствами. Во-первых, таким способом не удается достичь общего представления о поведении материала в различных условиях нагружения при ползучести и упругом восстановлении, а также в сложных режимах нагружения. Во-вторых, данные, полученные при ползучести, не могут быть каким-либо простым способом сопоставлены с характеристиками поведения тех же материалов, получаемыми при измерении релаксации напряжений или при динамических испытаниях. [c.190]

    Мне кажется справедливой и основная концепция автора, которая сводится к тому, что специфические особенности строения высокополимеров проявляются в специфических закономерностях их разрушения. Способность макромолекул деформироваться проявляется в эффекте дополнительной ориентации. Материал, взятый для испытания, имеет структуру, существенно отличающуюся от структуры материала в том месте, где она разрушается. Релаксационные свойства, проявляющиеся в процессе разрушения, существенно отличаются от тех, которые оцениваются при обычных методах (например, релаксация напряжения при значениях деформации, малых по сравнению с разрывными). [c.5]

    Если бы сопротивление разрушению обуславливалось бы только противодействием за счет сил главных химических валентностей, то в рассматриваемом случае значения разрушающих напряжений для всех трех типов полимеров были бы одинаковыми, так как характер химических связей в цепи и между цепями для всех трех типов образцов одинаков. Однако одинаковые сопротивления разрущению получались только при одном способе испытания, а именно при так называемом квазиравновесном способе деформации. При этом образцы подвергаются последовательной деформации, проходящей ряд дискретных значений вплоть до разрушения. Каждое из значений деформации поддерживается такое время, в течение которого в основном заканчивается процесс релаксации напряжения. Смысл такого метода заключался в том, что при заданной постоянной температуре испытания в результате флуктуаций тепловой энергии связи межмолекулярного взаимодействия рвутся чаще, чем связи сил главных химических валентностей. Поэтому, если в элементарном акте разрыва одновременно рвутся связи первого и второго рода, то при квазиравновесном способе испытания межмолекулярные связи не противодействуют разрыву, поскольку они были преодолены при значениях деформаций, предшествующих разрушающему. [c.224]

    При испытании образца в условиях одноосного сжатия необходимо учитывать, что при изменении отношения высоты образца /г к его диаметру ё кривые сжатия или релаксации напряжения существенно отлича- [c.21]

    Приборы для испытаний полимеров в режиме релаксации напряжений [c.24]

    Так, универсальный прибор для механических испытаний полимерных материалов разработан В. И. Павловым и М. Т. Стадниковым [6]. Этот прибор позволяет проводить измерения диаграмм растяжения и сжатия (зависимостей напряжения от деформации), кривых релаксации напряжения и ползучести (зависимостей напряжения или деформации от времени), термомеханических кривых (зависимостей деформации от температуры), диаграмм изометрического нагрева (зависимостей напряжения от температуры при постоянной деформации), а также ряд других измерений. Особенностью прибора помимо высокой чувствительности и жесткости динамометрической системы является возможность проведения на нем ряда последовательных испытаний на одном и том же образце. [c.25]


    Датчик деформации 4 представляет собой проволочный реохорд, включенный в одно из плеч полумоста безындуктивных сопротивлений. Он связан с винтом-штоком через мелкомодульную гайку, шестерню 15 и фрикцион 3. Для визуального отсчета деформации служит барабан 5 отсчетного устройства 16. Прибор предусматривает возможность установки требуемой деформации образца в опытах по релаксации напряжения. Благодаря наличию постоянно установленного реверсора (обойма 25 с зажимами) можно проводить испытания на растяжение или сжатие. [c.25]

    Нагревание. Мы уже отмечали, что действие температуры вызывает в полимерах более активное движение молекулярных групп и это повышает текучесть материала. Проведение испытаний при повышенных температурах позволило нам предсказать поведение материала (ползучесть и релаксацию напряжений) в условиях долговременных испытаний при пониженных температурах. Однако повышать температуру следует осторожно, поскольку длительное нагревание может ускорить, старение полимера, т. е. вызвать иные эффекты, нежели те,. [c.189]

Рис. 5.17. Отклик стандартного линейного тела (а) в экспериментах по релаксации напряжения (б) и при динамических испытаниях (в) Сц — исходный ж Ог — отрелаксировавший (равновесный) модули. Рис. 5.17. Отклик <a href="/info/320971">стандартного линейного тела</a> (а) в экспериментах по <a href="/info/23609">релаксации напряжения</a> (б) и при <a href="/info/117506">динамических испытаниях</a> (в) Сц — исходный ж Ог — отрелаксировавший (равновесный) модули.
    Для получения достаточной информации о вязкоупругом поведении материала необходимо иметь экспериментальные данные в широком интервале частот (или времен) и температур. В гл. 5 подчеркивалась эквивалентность результатов, полученных при изучении ползучести, релаксации напряжения и динамических испытаниях, а в гл. 7 будет рассмотрена эквивалентность эффектов, вызываемых изменением времени и температуры. Несмотря па то что этот факт иногда может сузить требуемый интервал экспериментальных измерений, в принципе желательно иметь возможность проводить измерения в широком временном и температурном диапазонах. Этого можно достичь только при совместном использовании большого числа методов, приблизительная временная шкала для которых приведена на рис. 6.1. [c.106]

    Значительное увеличение температуры может двояко влиять на разрушение полимеров. С одной стороны, повышенная температура может облегчить перемещение дефектов внутри кристаллических образований, способствуя более быстрому распространению трещин с другой стороны, возросшая молекулярная подвижность может облегчить и ускорить релаксацию напряжения или пластическое течение, не сопровождающееся разрушением. На суммарный эффект может сильно влиять метод испытания. Стойкость к растрескиванию различна в случае, если напряжения в образце создаются постоянной внешней нагрузкой или в результате приложения постоянной деформации. При повышении температуры стойкость к растрескиванию уменьшается до тех пор, пока не будет достигнута температура плавления наиболее низкоплавкой фракции. Выше этой точки влияние температуры неопределенно, так как скорость релаксационных процессов резко возрастает и приводит к снижению эффекта действия напряжений. Поэтому считают нецелесообразным при сравнении сопротивляемости разрушению разных полимеров ускорять испытание путем чрезмерного повышения температуры. [c.144]

    Определение функций температурно-временного сдвига и построение обобщенных кривых релаксации напряжений иа основе результатов квазистатических испытаний. В предыдущем пункте рассмотрен случай, когда нагрулгение реализуется в ре- [c.82]

    Прибор 2026РОС (рис. 5.5) предназначен для испытания резин на релаксацию напряжения при осевом сжатии. Прибор состоит из привода, подъемного винта 1, механизма 2 перемещения струбцины [c.54]

    Воздействие тепла и кислорода иа напряженные полимеры приводит к деструкции полимерных молекул, следствием которой являются химическая ползучесть, химическая релаксация и уменьшение долговечности. Имеются стандартные методы испытаний на определение ползучести растянутых образцов резины при старении (Р = onst), релаксации напряжения и остаточной деформации в сжатых образцах (е = onst). [c.130]

    Релаксационные процессы могут быть выявлены методами как динамических (или частотных) испытаний, так и квазистатически-ми методами исследования релаксации напряжений и ползучести в изотермических условиях. [c.122]

    При измерении механических характеристик пластмасс возникает ряд вопросов, связанных как с теоретическим анализом получаемых результатов, так и с методиками экспериментов по измерению релаксации напряжения, ползучести и долговременной прочности. В связи с этим в каждой главе проводится теоретический анализ влияния режимов испытаний на характер получаемых кривых релаксации напряжений л ползучести. В первом случае наиболее важно учип дать влияние скорости деформирования на ход кривых релаксации напряжения в условиях поддержания постоянной деформации, а во втором — влияние скорости нагружения на ход кривых ползучести в условиях поддержания постоянного напряжения. [c.9]

    Капиллярные вискозиметры обладают и рядом недостатков, ограничивающих их возможности. Измерение происходит только в режиме установившегося течения, хотя поведение материалов в первый момент после приложения нагрузки и процесс релаксации напряжения также представляют большой интерес. Для исследования материалов при высоких скоростях деформации необходим их повышенный расход. При анализе таких высоковязких материалов, как каучуки и резиновые смеси, большую ошибку вносят входные потери (нежелательные перепады давления на начальном участке, где еще не развился профиль потока). Для целей контроля качества научный подход с использованием капиллярной реометрии и её идеальных условий испытаний слишком сложен и требует больших затрат времени. [c.452]

    Модул - цу.1ч аннзато[ Е. измеренные прп испытании на растяжение методом релаксации напряжения (24 ч. 20 °С), были равны примерно 3 кгс1сч-- [c.176]

    Протот1 пом дорнового метода является конусный способ испытаний кольцевых образцов, с помощью которого можно изучать ползучесть и релаксацию напряжения [26]. Недостаток цилиндрического дорна связан с наличием концентратора в месте перехода конической части в цилиндрич,ескую. В этом отношении шариковый дорн имеет очевидные преимущества. Он создает в об- [c.263]

    При существенно разнородных механических свойствах часть объема сварного соединения, например основной металл, будет являться аккумулятором упругой деформации, и процесс релаксации напряжений в нем будет происходить в условиях дополнительной медленной разгрузки. Те зоны, в которых релаксационная стойкость металла понижена, например мягкие прослойки, будут испьгтывать непрерывную догрузку и процесс в них будет идти, как близкий к испытанию на ползучесть. Испытания образцов и расчет напряженного состояния для такого случая целесообразно организовать следующим образом. Для более прочного металла следует получить семейство кривых простой релаксации от различного уровня начальных напряжений о, (рис. 5.4.5,а). Затем по ним рассчитать напряженное состояние для всего тела В предположении, что оно имеет всюду одинаковые свойства, в том числе и для зон мягких прослоек. Так как мягкие прослойки занимают относительно небольшой объем, их вклад в общую релаксацию напряжений будет невелик. В первом приближении можно принять, что уровень интенсивности напряжений в мягких прослойках о, будет [c.127]

    При испытании малогабаритных образцов полимеров к прибору предъявляются повышенные требования в отношении жесткости силоизмерительной системы, параллельности рабочих цилиндров (при испытании на сжатие), чувствительности измерительной системы и т. д. Таким требованиям отвечает прибор для микро-механических испытаний [8], который весьма удобен для работы с - микрообразцами. Прибор позволяет проводить цспытания в условиях сжатия и растяжения, релаксации напряжения, а при наличии специального приспособления—определять кривые ползучеста. [c.29]

    Первый тип испытаний (NA E) при постоянной нагрузке более достоверен, так как при нем не идет процесс релаксации напряжений при этом материал считается стойким, если отношение [c.155]


Смотреть страницы где упоминается термин Релаксация напряжений испытания: [c.57]    [c.201]    [c.110]    [c.152]    [c.125]    [c.208]    [c.99]    [c.137]    [c.444]    [c.202]    [c.211]    [c.252]    [c.347]    [c.56]    [c.292]    [c.122]    [c.103]   
Механические испытания каучука и резины (1964) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Испытания на напряжение

Релаксация напряжения



© 2025 chem21.info Реклама на сайте