Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изобутилен в растворах

    Изобутилен растворим в воде. В 1 объеме воды при 0°С и парциальном давлеиии газа 760 мм рт. ст. растворяется 0,31 и при 25°С —0,15 объемов изобутилена. [c.352]

    Изобутилен растворим в этиловом спирте, эфирах, углеводородах. Растворимость в воде в интервале 283 - 313 К составляет 0,17 - 0,25 л/л (приведено к нормальным условиям). С некоторыми соединениями образует азот-ропные смеси, в частности с безводным аммиаком [45% (масс.) КНз  [c.7]


    Теплота, выделяющаяся при полимеризации этилена (800— 1000 ккал/кг), в несколько раз превышает теплоту полимеризации других мономеров метилметакрилат (эмульсия) — 129, стирол (жидкость) — 164, изобутилен (раствор) — 228 ккал/кг. [c.35]

    Гидратация изобутилена в т/)ет-бутиловый спирт идет в очень разбавленных растворах серной, соляной и азотной кислот, а также ив муравьиной, уксусной и щавелевой кислотах. Было определено равновесие между изобутиленом, т/)ет-бутиловым спиртом и водой [31, 42]. [c.355]

    Превращение изобутилена в т/ ет-бутиловый спирт с 65—70 %-ной кислотой описано Бутлеровым в 1867 г. [12], однако этот спирт имел малое промышленное значение. До открытия алкилирования при помощи концентрированной серной кислоты полимеризация изобутилена в диизобутилен с последующим гидрированием в изооктан имела незначительное промышленное значение. Изобутилен реагировал с холодной 70 %-ной серной кислотой, а затем раствор нагревался с целью получения полимеров, в основном диизобутилена. [c.355]

    Кроме полимеризации некоторых простых олефинов, разбавленная серная кислота каталитической гидратацией образует спирты. В случае изобутилена баланс между этими двумя реакциями представляет практический интерес. Абсорбированное количество является функцией водного содерн ания кислоты для наибольшей части олефина, присутствующего в растворе как третичный бутиловый спирт [385]. Однако этот раствор, если его оставить на несколько дней или тотчас же при нагревании до 80—100° С дает свободную кислоту и димер-тримерную смесь 1386] более короткое время реакции при более высокой температуре способствует образованию более летучих полимеров. Летучесть конечных полимеров можно контролировать, регулируя перед нагреванием кислотность раствора [387]. В открытой системе не весь абсорбированный изобутилен нолимеризуется часть его переходит в отходящий газ. Количество перешедшего в газ изобутилена опять-таки зависит от кислотности. Низкая кислотность способствует высокому газообразованию более высокие кислотности дают больше полимера, но он содержит меньше димеров. Это соотношение приведено на рис. П-5, который иллюстрирует взаимодействие в системе изобутилен — 63,5 %-пая серная кислота (кислота такой концентрации, полностью загруженная в изобутилен при комнатной температуре, титруется до получения 30 г НаЗО на 100 мл раствора). [c.113]

    В промышленности раствор серной кислоты применяется в так называемых холодных или горячих кислотных процессах для полимеризации изобутилена. Оба процесса основаны на описанных выше принципах. Холодный кислотный процесс включает в себя абсорбцию изобутилепа при нормальной температуре из нефтезаводских газовых фракций при помощи 60—65% серной кислоты, которая не абсорбирует нормальные бутены. Раствор, в большой степени содержит изобутилен в виде трет-бутиловых спиртов, нагреваемых примерно до 100° С. Получается смесь димера и тримера в отношении 3 1 [392, 393]. Вышеприведенный двухступенчатый процесс дает жидкие углеводороды в количествах, согласующихся только с имеющимся налицо изобутиленом. [c.115]


    Третичные спирты. Изобутилен активно поглощается 60—65%-ной серной кислотой, а под давлением — даже более слабым раствором кислоты, причем количество поглощенного изобутилена зависит скорее от наличия воды, чем от содержания кислоты. Например, при концентрации серной кислоты 35% поглощение может составлять до 7,2 моля изобутилена на 1 моль серной кислоты [250]. При этом очевидно, что олефин присутствует в растворе в виде спирта. Подобным образом пять эквивалентов триметилэтилена можно растворить в 46/6-ной кислоте [251]. Поскольку даже разбавленные кислотные растворы олефинов с третичным углеродным атомом выделяют олефин при нагревании, реакционную смесь обычно нейтрализуют перед ступенью гидролиза. [c.578]

    Гидратацию изобутилена можно осуществить в разбавленных водных растворах сильных кислот (НС1, НВг) при комнатной температуре без катализатора. Кинетические определения показали, что скорость присоединения воды к изобутилену прямо пропорциональна концентрации ионов водорода в растворе, и гидратация протекает по следующей схеме, которая включает образование промежуточного карбокатиона  [c.193]

    Перед входом в полимеризатор изобутилен смешивается с жидким этиленом в отношении 1 1, после чего смесь поступает на ленту. По другой линии из холодильника на ленту поступает жидкий этилен, в который через ротаметр дозируется трифторид бора. Эти два потока непрерывно подаются на движущуюся ленту. При смешении двух потоков происходит интенсивная полимеризация изобутилена, сопровождаемая выделением большого количества тепла, которое отводится бурным испарением жидкого этилена. На образовавшийся полимер, который движется вместе с лентой, непрерывно из мерника 5 через смотровой фонарь 4 по каплям поступает раствор стабилизатора для предотвращения его деструкции при дегазации и переработке. [c.336]

    Водный раствор формальдегида подается в реактор в внде сплошной фазы, а изобутилен (С4-фракция) — в виде дисперсной фазы. [c.307]

    Реакция полимеризации происходит в жидкой фазе при —30 °С и ниже в зависимости от необходимой степени полимеризации. Сырьевая смесь поступает двумя потоками в реактор 5 через распылительные устройства, катализатор (2%-ный раствор хлорида алюминия в этилхлориде) подается в реактор через три распылительных устройства. Степень полимеризации составляет 80—90 %. Выделяющаяся при реакции теплота снимается путем многократного пропускания реагирующей смеси над охлаждающими поверхностями реактора 5. Полимер, растворенный в изобутане, поступает из реактора. в диафрагмовый смеситель 6, куда подается этиловый спирт для дезактивации затем полимер смешивают с маслом-разбавителем в емкости 7. Полиизобутилен, растворенный в масле, поступает на дегазацию, которая осуществляется в двух колоннах одна из них (8) работает при небольшом избыточном давлении, а вторая (/2) —в вакууме. В колонне 8 отделяются непрореагировавшие изобутилен и изобутан, а также этилхлорид и этиловый спирт. Раствор полиизобутилена в масле из нижней части колонны 8 направляется в колонну /2 и после дополнительной перегонки направляется в емкость /5 товарного продукта. [c.242]

    Углеводородный слой с верха реактора I и легкий погон ректификации водного слоя объединяют и обрабатывают в нейтрализаторе 3 движущимся противотоком водным раствором щелочи, который после этого смешивают с водным слоем, выходящим из реактора 2, подавая на совместную переработку, описанную выше. Из промытого углеводородного слоя в колонне 4 отгоняют непревращенный изобутилен, возвращая его на реакцию (при использовании фракции, содержащей бутаны и н-бутилены, во избежание их накопления в рециркуляте необходима дополнительная ректификация для укрепления изобутилена). Затем в колонне 5 из про- [c.558]

    Первые результаты, полученные при контактировании изобутилена с серной кислотой [5], указывают, что он образует нерастворимые в кислоте олигомеры, главным образом Сз— ie [реакции (7а) и (11)]. Небольшие количества олигомеров, представляющих собой непредельные углеводороды, содержались также в углеводородной фазе после ее обработки раствором едкого натра при алкилировании изобутана бутеном-1 в лабораторных условиях [1]. Можно сделать вывод, что в ходе алкилирования образуется некоторое количество олефинов Са— ie, но в присутствии кислоты они ионизуются и образуют соответствующие катионы, обладающие высокой реакционной способностью подробнее это рассмотрено ниже. Из всех олефинов С4 изобутилен, безусловно, легче, чем другие, подвергается олигомеризации. [c.122]

    Первая стадия процесса (конденсация изобутилена с формальдегидом) проводится в двух трубчатых реакторах 1 и 2, охлаждаемых водой. Изобутиленовая фракция и соединенный с ней возвратный (циркуляционный) изобутилен подаются в реактор 2 и из него в реактор 1, в который противотоком поступает водный раствор формальдегида, подкисленный серной кислотой. Верхние и нижние части реакторов работают как сепараторы, разделяя реакционную массу на углеводородный и водный слои. В углеводородный слой переходит ДМД, в водном [c.334]


    Эфиры легче всего образуются с олефинами, содержащими третичный углеродный атом (гидролиз этих эфиров ведет к образованию третичных спиртов). Так, например, изобутилен растворяется в 63%-ной серной кислоте при комнатной температуре и атмосферном давлении. При этом образуется моноизобутилсерная кислота (но не диизобутилсерная), которая легко гидролизуется в третичный бутиловый снирт. Спирт может быть выделен путем отгонки с водяным паром пли высаливания сульфатом аммония. Образование сложных эфиров серной кислоты протекает наиболее интенсивно с олефинами Сб—Се [23]. [c.225]

    С алкенами серная кислота вступает в реакции присоединения. Легче всего взаимодействует кислота с алкенами, содержащими третичный углеродный атом, наиример изобутилен растворяется в 63% Н2304 при комнатной температуре. Вторичные алкены вступают в реакцию с серной кислотой более высокой концентрации. Так, пропилен взаимодействует с 65—70%) кислотой при повышенных температуре и давлении, а для поглощения бутиленов и амиленов нормального строения исшзльзуют 80—90% кислоту. Этилен вступает в реакцию только с 94—98% кислотой. [c.315]

    В поглотительный сосуд впускают из бюретки 1 мл 60%-ной серной кислоты и затем вытесняют туда же из бюретки измеренный объем газа. Прн этом все время поддерживают давление, равное атмосферному, соответственно опуская уравнительную склянку, соединенную с поглотительным сосудом. Через 30 сек газ переводят обратно в газовую бюретку. Операцию повторяют еще один раз. После этого измеряют объем газа в бюретке Бунте. Заменяют отработанную серную кислоту 1 мл свежей серной кислоты и повторяют поглощение газа до тех пор, пока объем газа не уменьшится не менее чем на 5 мл. После этого таким же образом поглощают газ 707о-иой серной кислотой до тех пор, пока при трех повторных замерах (при продолжительности контакта газа с кислотой 1 мин) объем газа не станет постоянным. Результаты анализа вычисляют, исходя из предположения, что в 60%-ной серной кислоте растворяется только изобутилен, а остальные бутилены не растворяются. При поглощении 70%-ной серной кислотой наряду с изобутиленом растворяются и все другие бутилены. Суммарную величину уменьшения объема после поглощения 70%-ной серной кислотой вычитают из общего объема поглощенного газа. [c.772]

    В других опытах [39] изобутилен пропускался в 67 %-ную серную кислоту при температуре ниже 20°. При этой температуре изобутилен поглощался с образованием т/гет-бутилового спирта, но образования полимера не наблюдалось. Полученная смесь затем нагревалась до 70—100° и реакция полимеризации происходила как в неразбавленной смеси, так и в разбавленном водой растворе серной кислоты с концентрацией последней, равной соответственно 66 и 58%. Во время нагревания часть изобутилена регенерировалась, причем количество регенерированного изобутилена было больше при большем насыщении им серной кислоты. При применении перемешивания или при добавлении к раствору твердого пористого материала количество регенерированного изобутилена увеличивалось. При разбавлении серной кислоты полимеризация тормозилась, но увеличивалось содержание диизобутилена в продукте полимеризации, а также повышалась степень регенерации изобутилена. Содержание диизобутилена увеличивалось также с повышением температуры реакции. Если раствор полимеризовался при комнатной температуре в течение длительного времени, то образовывались небольшие количества диизобутилена и большие количества триизобутилена. При исследовании продукта полимеризации в ходе этой реакции было замечено, что количество образовавшегося диизобутилена было значительно большим в начале реакции, т. е. когда раствор содержал больше 7ирет-бутилового спирта. [c.193]

    Действие азотной кислоты на олефины было уже описано, но результаты более ранних работ разноречивы и иногда запутаны, а так как шло очень сильное окисление, то образующиеся в результате окислы азота присоединялись по двойной связи, как уже отмечалось выше. При пропускании этилена в чистую 98,6%-иую азотную кислоту при —30° сначала образуются пары окислов азота. При аналогичных условиях бутен-1 дает только продукты окисления. Триметилэтилен в растворе четырех-хлорйстого углерода при —20° дает в качестве основного продукта туоет-аммлнитрат, продукт присоединения кислоты по двойной связи аналогично изобутилен дает / г/)ет-бутилнитрат [21]. [c.378]

    При условиях, сильно отличающихся от только-что описанных, протекает новый тип реакции между олефинами и нитрилами с серной кислотой в растворе ледяной уксусд10й кислоты или дибутилового эфира [26, 27]. Предполагают, что реакция идет через стадию первоначального образования алкилсульфата, который затем реагирует с нитрилом. Так, например, изобутилен превращается в М-т/ ет-бутиламид  [c.380]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]

    Чистый изобутилен выделяют обработкой и деалкилированием трет-бутл-фенола, а также при помощи аммиачных растворов хлористой меди. [c.67]

    Дегидратация проводится в реакторе колонного типа, верхняя часть которого заполнена катализатором, а нижняя представляет собой исчерпывающую часть ректификационной колонны. Из верхней части дегидрататора выводится изобутилен, который после осушки и ректификации является готовым продуктом. Воду из нижней части дегидрататора подают в рецикл. Водный раствор растворителя и воду, возвращаемую в рецикл, подвергают ионито-вой очистке от ионов железа. [c.731]

    Растворимость газов в нефтяных фракциях зависит от природы газа Фишер и Цербе показали, что нефтяной эфир уд. веса 0,668 при 20 " растворяет 1,34% метана. Более тяжелые бензины растворяют меньше. Давления способствуют растворению. Более тяжелые 1 азы растворяются легче, напр., изобутилен и т. п., но здесь наблюдаются при испарении растворенного газа отступления от закона Генри [см. Гурв1п (403)]. [c.134]

    Бутадиен дает комплексное соеданение нейтральным насыщенным водным раствором хлористой меди. Этот осадок разрушается при нагревании и дает чистый или во всяком случае высокопроцентный бутадиен. Однако осадок физически адсорбирует изобутилен, если он присутствует одновременно. Подобное выделение бутадиена не имеет аналитическою зка-чеиия, яо может бьггь. использовано при кон-центранди бутадиена в (газах. [c.390]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    МПа и поступает в буфер-испаритель 3, в котором испаряются углеводороды С4, в том числе и непревращенный изобутилен. Из нижней части буфера 3 раствор /прт-бутилового спирта в водном этилцеллозольве поступает на питание ректификационной колонны 4, с верха которой отгоняют водный азеотроп спирта вместе с оставшимися легкими углеводородами. Этот поток направляют в колонну 5, погоном которой являются углеводороды С4, а кубовым продуктом —. водный азеотроп тргт-бутилового спирта. Кубовый продукт колонны 4, представляющий собой смесь воды, этилцеллозольва и эмульгатора, проходит теплообменники б и 7 и поступает в систему ионитных фильтров 8, в которых освобождается от ионов 50 и Ре , после чего возвращается на гидратацию. [c.232]

    Здесь Са+ — триметилпентильные или диметилгексильные катионы. Олигомеры (непредельные соединения) образовывались в незначительных количествах при быстром добавлении холодного раствора щелочи в алкилат, покидающий реактор [1]. Когда, однако, кислотную и углеводородную фазы после отстаивания разделяли декантацией, олефины почти не определялись. Для изобутилена особенно характерно образование карбкатионов С8+ и более тяжелых [5, б] такие карбкатионы, возможно, являются важными промежуточными соединениями, когда алкилирование ведут изобутиленом. [c.120]

    По данным кинетических исследований, энергия активации деполимеризации 50%-го триоксана в водном растворе серной кислоты составляет 30—32 ккал1моль, в то время как энергия активации полимеризации мономерного СНаб в полиоксиметилен составляет 18—20 ккал1моль [3], а конденсации СН2О с изобутиленом 15—18 ккалЫоль [6]. Это позволяет предположить, что лимити- [c.145]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]


Смотреть страницы где упоминается термин Изобутилен в растворах: [c.13]    [c.166]    [c.16]    [c.17]    [c.365]    [c.360]    [c.368]    [c.379]    [c.384]    [c.71]    [c.20]    [c.53]    [c.335]    [c.335]    [c.379]    [c.94]    [c.251]    [c.335]   
Синтетические каучуки Изд 2 (1954) -- [ c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Изобутилен



© 2025 chem21.info Реклама на сайте