Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ароматических соединений гетероциклов

    Главы расположены в том порядке, в каком обычно излагаются соответствующие разделы в лекционном курсе соединения алифатического ряда, алициклические соединения, ароматические соединения, гетероциклы. В каждой главе упражнения и задачи даны в опреде- [c.3]

    Ароматические соединения, гетероциклы [c.151]

    Подобно ароматическим соединениям, гетероциклы также изображают в виде сокращенных формул, сохраняя при этом имеющиеся двойные связи и гетероатомы. [c.174]


    Таким образом можно рассчитать напряжения циклических олефинов, ароматических соединений, гетероциклов и полициклических углеводородов. В табл. II. 8 приведены некоторые результаты таких расчетов. [c.73]

    В 20—40-е годы было синтезировано большое число самых разнообразных антигенов, представляющих собой белки, конъюгированные с разнообразными ароматическими соединениями, гетероциклами, включая пуриновые и пиримидиновые основания, аминокислотами и олиго-пептид ами,-Моно- и олигосахаридами, органическими кис-лотами, стероидами. Все перечисленные вещества в составе антигена способны индуцировать образование взаимодействующих с ними антител. Обширный фактический материал, в накоплении которого особенно значителен вклад К- Ландштейнера и его сотрудников, открыл исключительные возможности для понимания принципов распознавания антигенных детерминант антителами. [c.25]

    Простейшие ароматические гетероциклы. Пятичленные гетероциклы с одним, гетероатомом. Относящиеся к этому типу ароматические соединения, например фуран, пиррол и тиофен, намного активнее бензола в реакциях электрофильного замещения (особенно фуран и пиррол). Как уже отмечалось в разд. 5.1, эти гетероциклы имеют дипольные моменты (0,7, 1,8 и 0,55 Д соответственно). [c.352]

    Рациональная номенклатура для гетероциклов очень схожа с номенклатурой ароматических соединений. В этом случае за основу берут название определенного гетероцикла — фурана, тиофена, пиррола, пиридина и т. д., а положения заместителей в них обозначают цифрами или буквами греческого алфавита. Так, в пятичленных гетероциклах положение 2(5) обозначают буквой а(а ), а положение 3(4) —р( 5 ). В шестичленных гетероциклах положения 2(6), 3(5) и 4 обозначают соответственно буквами а(а ). Р(Р ) и у. При этом нумерацию начинают с гетероатома (если их несколько, то нумеруют в порядке О, 5, ЫН, Ы). Например  [c.353]

    Для удобства гетероциклы обычно изображают с помощью упрощенных формул, как это делается для ароматических соединений  [c.353]

    Характером гетероатома определяется и некоторая индивидуальность этих гетероциклов. Так, от электроотрицательности гетероатома зависит способность его неподеленной пары электронов к взаимодействию с л-электронами кольца. Так как электроотрицательность атома серы меньше, чем у атомов азота и кислорода, то наиболее полно это взаимодействие будет проявляться у тиофена. Поэтому тиофен более ароматичен , чем бензол, а у пиррола и фурана ароматический характер проявляется слабее. Более того, фуран, например, участвует в некоторых реакциях присоединения, проявляя при этом скорее свойства алифатических диенов, чем ароматических соединений. [c.356]


    Двойная связь может принадлежать карбонильной группе, оксиму или олефину. В общем случае она может образоваться также из ароматического соединения или гетероцикла. Условие для перегруппировки Мак-Лафферти состоит в том, чтобы атом водорода находился в 7-положении к двойной связи, причем промежуточные атомы (например, цепь атома С или О в эфирах) не имеют значения. Перегруппировка Мак-Лафферти чаще всего приводит к получению очень интенсивных пиков. Их массовые числа лежат на одну единицу выше массовых чисел осколков, образование которых можно ожидать вследствие простой реакции фрагментации. [c.282]

    Гетероциклические соединения делят на предельные, непредельные и ароматические. Ароматические и гетероциклы по своему электронному строению близки к бензолу, что объясняется соответствующим электронным вкладом гетероатома в формирование делокализованного секстета я-электронов. В молекуле пиридина гетероатом азота подает в систему один / -электрон, а орбиталь с неподеленной парой электронов располагается в плоскости цикла. Такая особенность электронного строения пиридина обусловливает его ароматические свойства. [c.423]

    Напишите схемы электронного строения пятичленных гетероциклов — фурана, пиррола, тиофена — и поясните, почему они обладают свойствами ароматических соединений. [c.136]

    Ароматические гетероциклы — пиридин, пиррол, тиофен, фуран и другие — по своему геометрическому строению аналогичны бензольным ядрам это плоские системы, которые при наличии боковых цепей или включении в сложные полициклические структуры могут проявлять совершенно такие же конфигурационные и конформационные особенности, как ароматические соединения. [c.531]

    Для металлургии производят миллионы тонн кокса. Попутно получают и большие количества каменноугольной смолы (3 % от массы угля), в которой содержатся ароматические углеводороды. Из 1 т каменноугольной смолы перегонкой в сочетании с химической обработкой получают 16 кг бензола, 2,5 кг толуола, 0,3 кг ксилолов, около 20 кг фенола и его гомологов, около 50 кг нафталина, до 20 г антрацена. Кроме того, в каменноугольной смоле содержатся высшие ароматические углеводороды, гетероциклы— в общей сложности до 400 соединений. [c.271]

    Одним из разделов современной органической химии является создание высокоэффективных процессов получения органических соединений ароматического характера многоцелевого назначения. В значительной степени решение этой задачи связано с разработкой инструментария - эффективных методов получения широкого ряда разнообразных по структуре ароматических соединений, содержащих функциональные группы различной природы. Реакции ароматического нуклеофильного замещения являются эффективными инструментами синтеза разнообразных азотсодержащих гетероциклических соединений. Процессы этого типа могут быть использованы как для введения в ароматические соединений гетероциклических фрагментов либо модификации гетероароматических структур, так и непосредственно для формирования гетероциклов. [c.126]

    До недавнего времени поиски химиотерапевтических веществ велись, главным образом, в области ароматических соединений и азотсодержащих гетероциклов. Однако за последние двадцать лет были обнаружены многочисленные фурановые вещества, обладающие антибактериальной активностью и пригодные для лечения различных заболеваний. [c.224]

    Ароматические азотсодержащие гетероциклы, формально имеющие двойную связь С-Ы, также способны присоединять литийорганические соединения. В этом случае чаще наблюдается 1,2-присоединение  [c.240]

    Первые две главы кратко знакомят с теоретическими подходами к изучению структуры и химических свойств ароматических соединений и в том числе гетероциклов, а также с основными принципами построения гетероциклических систем. [c.5]

    Все содержание книги пронизано идеей аналогии гетероциклов с ароматическими соединениями бензольного ряда и другими системами. Поэтому изложение курса авторы начинают с пиридина и его производных. Эта и все последующие главы (некоторые из них в русском переводе объединены) построены по единому плану, что значительно упрощает пользование учебником и облегчает усвоение материала. [c.6]

    Нуклеофильное замещение в ароматических соединениях [2в]. Введение 0-, Ы- и С-нуклеофилов в галогенированные ароматические соединения можно осуществить путем реакции нуклеофильного замещения по механизму присоединения - отщепления или ариновому механизму. Примеры синтез ароматических эфиров (И-15), обмен галогена на СК в азокрасителях Н-2а и синтез дифенилпикрилгидразила (К-44). Ариновые реакции нашли применение в синтезе гетероциклов и ароматических соединений (Л-30, Л-32). [c.167]

    Частоты скелетных колебаний кольца являются общими для гетероциклических соединений с одинаковым числом атомов углерода в кольце и с различными гетероатомами. Для пятичленных циклов — пиррола, фурана, тиофена и их замещенных — частоты поглощения, соответствующие колебаниям кольца, приведены в табл. ( Л. Шестичленные гетероциклы по типам колебаний кольца совершенно анало1ичны ароматическим соединениям и мало различаются между собой, как это видно из табл. 69, 70 и 71. [c.134]


    Несопряженные гексадиены количественно превращаются в ароматические соединения при межфазном окислении перманганатом в системе твердая фаза/жидкость, а их сопряженные аналоги в этих условиях не реагируют [1179]. В системе бен-Эол/водный KMn04/Bu4N l из 1Н-4,5-дигидро-1,2,3-триазолов образуются ароматические гетероциклы [1180]. Однако, когда эти триазолины содержат б-трет-аминогруппу, боковая цепь окисляется легче, чем кольцо [1181]  [c.384]

    Полученные в нашей лаборатории данные но избирательному гидрированию высокомолекулярных конденсированных ароматических соединений из ромашкинской нефти, содержащих 4,4% 8, показывают с несомненностью, что основная часть серы входит в состав гетероциклов. При полном удалении серы общее количество колец на молекулу снижалось в среднем на 1,6 (с 4,8 до 3,2). Условия гидрирования исключали возможность крекинга, т. е. разрыва С — С-связей. Исследование методом ультрафиолетовой спектроскопии фракций, полученных при хроматографическом разделении на окиси алюминия отбензиненной нефти месторождения Вассон (Тексас) [511, показало, что сернистые соединения в отбензиненной нефти (выше 150° С) составляют не менее 15%, причем на долю гомологов тиофена (бензтиофены, дибензтиофены и тиофеннафталины) приходится около 70%. Эти исследователи также подчеркивают, что наиболее высокое содержание серы (4,73—6,11%) приходится на фракцию с конденсированными ароматическими структурами. В гомологах бензола содержалось всего 0,86% 8, причем она почти поровну распределялась между тиофеновой и сульфидной серой. [c.346]

    Гетероциклические соединения содержат в молекуле цикл, в состав которого, кроме атомов углерода, входят атомы других элементов -гетероатомы. Чаще всего это - кислород, азот, сера. Циклы могут быть насыщенными или содфжать кратные связи, а также иметь ароматический характер. Гетероциклы могут содержать и несколько гетероатомов в кольце. Существуют также гетероциклические системы с конден-сированнъши кольцами. [c.244]

    Однако между ароматическими соединениями и алкенами существуют принципиальные различия. Во-первых, ароматические соединения проявляют склонность к замещению атомов водорода на электрофильную группу, а алкены — к присоединению реагентов по кратной связи. Во-вторых, алкены реагируют с большим числом окислителей (КМПО4, 0з04, Н2О2, органические пероксикислоты и др.), которые в ароматических соединениях могут окислять только боковые цепи, оставляя неизменным изоциклическое кольцо. (Пятичленные ароматические гетероциклы значительно менее устойчивы к действию окислителя по сравнению иензолом, а щестичленные — наоборот.) [c.313]

    Однако и гетероатомы, входящие в состав цикла, оказывают влияние на свойства гетероциклических соединений. В некоторых гетероциклах в отличие от ароматических соединений наблюдается неравномерное распределение я-электронной плотности в молекуле. Например, в пятичленных гетероциклах (в фуране, тиофене и пирроле) плотность смещена от гетероатома в сторону кольца и будет наибольшей в а-положениях. Это приводит к тому, что в этих положениях наиболее легко идет процесс электрофильного замещения (5е)  [c.355]

    Выявление соединений с двойной связью, особенно олефинов с сопря женными связями, ароматических углеводородов, гетероциклов ароматического характера замещения в таких молекулах [c.407]

    Не только бензольный цикл является ароматическим ароматическими могут быть также многие гетероциклические аналоги, содержащие в цикле один или несколько гетероатомов [45]. Если гетероатомом является азот, его неподеленная электронная пара не участвует в ароматической системе, и ароматический секстет практически не нарушается. Поэтому такие производные, как N-оксиды или пиридиниевые ионы, обладают свойствами ароматических соединений. Однако для азотсодержащих гетероциклов канонические формы, например 23, имеют гораздо большее значение, чем для бензола. Если гетероато- [c.65]

    Во всех приведенных выше ароматических соединениях основу их структуры составляют бензольные ядра. Есть, однако, и ароматические соединения, построенные из ядер иного типа. Из них важиейа1ими являются гетероциклы — ядра, не только построенные из углерода, но и содержащие также и атомы азота, кислорода, серы. Неуглеродные атомы, входящие в состав гетероцикла, называют еетероатомами. [c.129]

    Природа основных и возбужденных электронных состояний различных химических соединений различна и специфична для эт1пс соединений (здесь она не рассматривается), поэтому разные химические соединения в общем случае поглощают свет при разных длинах волн, характерных для каждого соединения. Если родственные соединения содержат одинаковые структурные фрагменты — хромофоры (например, одинаковые ароматические или гетероциклы, функциональные фуппы, ионы и т. д.), то в их электронных спектрах поглоще 1ия наблюдаются полос<.1, обусловленные поглощением хромог оров и расположенные приблизительно в одной и той же области. Положение этих характеристических полос несколько изменяется при варьировании растворителей. Химическое соединение, в зависимости от его природы, может иметь не одну, а несколько полос в электронном спектре гюглощения. [c.525]

    Органические соединения N и Р сильно отличаются друг от друга. Так, в химии фосфора неизвестны аналоги обычных нитросоединений ароматических Ы-гетероциклов и азосоединений в тех же случаях, когда аналогичные азотные соединения и имеются (первичные амины и фосфины, фосфино-ксиды и аминоксиды), наблюдается весьма большое различие в реакциях [II. Это объясняется тем, что Р менее электроотрицателен, чем N. и дает [c.274]

    Шестичленные азотсодержащие ароматические гетероциклы. Одной из характерных особенпостей характеристического УФ-поглощепия шестичленных азотсодержащих ароматических гетероциклов является их большое сходство с соответствующими ароматическими аналогами. Замена 1 руипы - СН— в ароматическом соединении на атом азота ( - —) незначительно влияет на положение основных полос поглощепия и приводит, как правило, к увеличению интенсивности поглощения. Следует отметить, что эта особенность присуща не только пиридину, но и хииоли-иу, акридину, феназипу и другим гетероциклам (табл. 73). [c.124]

    Спектры ЯМР С гетероциклических ароматических соединений качественно напоминают спектры замещенных алкенов, однако влияние гетероатома проявляется не так заметно, как, например, в алкенах. Для пиррола влияние атома азота проявляется в смещении резонанса сигналов 2 и 3 атомов в более сильное поле (на 10 м. д. для 2 атомов и - 20 м. д. для 3 атомов) по отнолгению к сигналу бензола [136]. Введение дополнительного атома азота в пятичленном цикле приводит к слабопольному сдвпгу для 2 атома. Смещение сигнала 3 атома фактически не наблюдается. Химические сдвиги С для некоторых азотсодержащих пятичленных гетероциклов приведены ниже [136]  [c.159]

    Восстаиовленне гетероциклических соединений вообще происходит подобно восстаиовлению ароматических соединений Одпако очень часто, особенно в случае пятичлеиных гетероциклов, имеет место расщепление кольца. Например, фуран восстанавливается до тетрагидрофурана н далее, до бутаиоча-  [c.30]

    Такие окислители, как азотная кислота [232] и перекись водорода [233], применялись для десульфуризации различных гетероциклов, в том числе пиримидип-2-тиолов и тиазол-2-тиолов, до родоначальных ароматических соединений. [c.426]

    Среди многочисленных соединений хинолинового ряда значительно меньше изучены 5,6-, 6,7- и 7,8-бензохино-лины и совершенно незначительно — дшогоядерные производные хинолина. Являясь химическими аналогами хинолина, по сравнению с ним молекулы бензохинолинов илн хинолиновых соединений с большим числом конденсированных бензольных циклов благодаря наличию новых конденсированных циклов имеют более сложное химическое строение, большее число сопряженных п-свя-зей и значительно большую площадь, занимаемую моле-кулоГг. Но, как известно, все эти факторы оказывают решающее влияние на физические и химические свойства молекулы. Наличие большого числа бензольных ядер позволяет осуществлять реакции, характерные для ароматических соединений, а наличие пиридинового цикла— реакции, характерные для этого класса гетероциклов. Все это открывает широкие возможности для синтеза новых соединений, так как благодаря своей особой химической природе они способны участвовать в самых различных химических реакциях, что дает основание ожидать появления у соединений бензохинолинового ряда и соединений с конденсированными циклами целого ряда новых физических и химических свойств, интересных с научной и практической точки зрения. [c.4]

    Структура книги и рекомендации но ее использованию. После общих замечаний по планированию, подготовке и проведению органических реакций, по аппаратурному обеспечению эксперимента, ведению лабораторного журнала (гл. I) говорится о получении и превращениях соединений с простыми функциональными группами алкенов, алкинов, галогеналканов, спиртов, простых эфиров и оксиранов, органических соединений серы, аминов, альдегидов и кетонов, а также их производных, карбоновых кислот и их производных, ароматических соединений (гл. 2). Полученные соединения служат затем в качестве строительного материала для синтеза более сложных молекул. После описания важнейших методов образования связи С—С (разд. 3.1) следует раздел, посвященный образованию и превращению карбоциклов (разд. 3.2). гетероциклов (разд. 3.3) и красителей (гл. 4). Далее изложены. методы введения защитных групп и изотопных меток (гл. 5), а также приведены примеры регио- и стереоселективных реакций (гл. 6). Центральное место в книге занимают более сложные синтезы аминокислот, алкалоидов, пептидов, углеводов, терпенов, вита.минов, ферромонов, простаглан-динов, инсектицидов и фармацевтических препаратов, планирование и разработка которых обсуждаются с привлечением принципов ретро-синтетического расчленения (гл. 7). Почти все рассмотренные в этой [c.10]


Смотреть страницы где упоминается термин ароматических соединений гетероциклов: [c.1004]    [c.701]    [c.164]    [c.578]    [c.798]    [c.333]    [c.149]   
Химия органических соединений фтора (1961) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Гетероциклы

Катализаторы окисления боковых цепей алкилзамещенных ароматических углеводородов или гетероциклов в ароматические (гетероциклические) карбонильные соединения

Спектры поглощения бензола и многоядерных ароматических соединений. Ароматические гетероциклы. Несимметричные цианины Идеализированные системы Интенсивность полос поглощения



© 2024 chem21.info Реклама на сайте