Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощения фактор

    Применение метода абсорбционной спектроскопии не ограничивается только определением концентраций веществ. В результате поглощения излучения энергия систем з1 меняется настолько незначительно, что это не приводит обычно к нарушению целостности молекул поглощающего вещества. Однако в результате смещения химического равновесия в растворе под влиянием различных факторов его поглощающие свойства могут изменяться весьма значительно. На этом основано применение метода абсорбционной спектроскопии для изучения равновесий в растворах, реакций гидролиза и полимеризации, определения состава комплексных соединений, их констант устойчивости и т. п. . В данной главе рассматривается только метод абсорбционной спектроскопии как один из методов количественного анализа. [c.458]


    Кроме химического и минералогического состава, величины и состава емкости поглощения, факторами, влияющими 1[ц свойства глин, являются степень дисперсности и форма частиц. [c.11]

    Поскольку при равновесии соблюдается условие АЯ =- T AS, изменение температуры приводит к изменению и АИ. При повышении температуры в системе усиливается действие энтропийного фактора (TAS >0), т.е. усиливается эндотермический процесс. Прн понижении температуры роль энтропийного фактора, наоборот, ослабевает, т. е. становится более заметным экзотермический процесс. Согласно принципу Ле Шателье, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением теплоты, а понижение температуры действует в противоположном направлении. Так, в рассмотренных выше равновесных системах [c.181]

    НИТЬ влиянием двух противоположно направленных воздействий. С одной стороны, всякая диссоциация протекает с поглощением тепла, и следовательно, при повышении температуры равновесие должно смещаться в сторону большей степени диссоциации. С другой стороны, при повышении температуры диэлектрическая проницаемость воды, служащей растворителем, уменьшается, а это способствует воссоединению ионов. Максимального значения константа диссоциации достигает при той температуре, при которой влияние второго фактора начинает преобладать. [c.462]

    Абсорбции (поглощения) фактор 420 Азеотронная ректификация (схема) 295, 290 [c.426]

    ПОГЛОЩЕНИЕ ФАКТОРА РОСТА ЭПИДЕРМИСА [c.70]

    Распространенность элементов зависит от многих факторов, но в конечном счете определяется вероятностью ядерных реакций их образования и относительной устойчивостью отдельных изотопов. Так, ядра с четным числом нейтронов менее склонны к захвату нейтронов, отчего их в природе больше, чем ядер с нечетным числом нейтронов, исчезающих за счет поглощения нейтронов, так как при этом они превращаются в другие элементы в результате ядерных реакций. [c.226]

    Выбор типа излучения зависит от многих факторов. Поглощение ионизирующего излучения веществом неселективно в отличие от поглощения в фотохимических процессах, где поглощение фотонов обусловлено наличием тех или иных поглощающих групп в молекулах вещества. [c.191]

    РАСЧЕТ СЛОЖНОЙ КОЛОННЫ С ПОМОЩЬЮ ФАКТОРОВ ПОГЛОЩЕНИЯ И ОТГОНА [c.418]

    В работе [84] рассмотрено влияние количества поглощенных торфом катионов (О) на его диэлектрическую проницаемость. Обнаружено, что величина е увлажненного торфа (И = 20%) при первоначальных добавках А1 и Ма практически не меняется, а при поглощении ионов Са уменьшается. Такое уменьшение, по-видимому, связано с понижением подвижности сорбированных молекул из-за структурных изменений сорбента. Полученные при сравнительно невысоких частотах (600 кГц) результаты дают основание считать, что миграция ионов в электрическом поле не существенна при количестве поглощенных торфом катионов в пределах 0,2 мг/экв на 1 г сухого вещества. В дальнейшем, с увеличением О, наблюдается волнообразное изменение е, что является результатом противодействия двух факторов роста подвижности ионов и их роли как пептизаторов или коагуляторов. Важным вопросом исследования диэлектрических свойств системы сорбент — сорбированная вода является, как отмечалось выше, установление связи между экспериментально определяемыми макроскопическими характеристиками е, г" и молекулярными параметрами сорбента и сорбата. Основой для установления этой связи может служить теория Онзагера — Кирквуда — Фрелиха (ОКФ), в соответствии с которой смесь сорбент — сорбат можно представить как систему различных ячеек сорбента и сорбата. Для такой системы, основываясь на общих теоремах Фрелиха [639], получено соотноше- [c.249]


    Рекомендуется следующий порядок расчета по методу факторов поглощения и отгона. [c.421]

    Порядок и последовательность расчета по методу факторов поглощения и отгона рекомендуются следующие. [c.424]

    Альфа-частицы легко задерживаются, но если уж они достигают легких или кровеносных сосудов, они наносят большие повреждения на очень коротком участке пути -, около 0,0025 см - из-за большой массы и высокой ионизирующей способности. Первостепенные факторы, определяющие опасность радиации для тканей, — это плотность ионизации (количество актов ионизации на единицу площади) и доза (количество поглощенной радиации). [c.352]

    Агрегатное состояние реагирующих и образующихся при реакции веществ является основным фактором, определяющим тип аппарата в целом. При синтезе присадок практически возможны следующие системы взаимодействия реагентов газ — жидкость, жидкость — жидкость и жидкость — твердое вещество. Взаимодействие газа и жидкости протекает тем активнее, чем больше поверхность их соприкосновения и чем эффективнее газ распределяется в жидкости. Скорость поглощения газа жидкостью увеличивается также при повышении давления системы. Одним из методов создания максимальной поверхности контакта в периодических аппаратах является перемешивание, которое получило наиболее широкое распространение в процессах производства присадок. В системах жидкость — жидкость взаимодействие компонентов ускоряется в результате развития поверхности массообмена реагирующих жидкостей и увеличения скорости перемещения одной жидкости относительно другой. Наиболее развитая поверхность массообмена и теплообмена образуется при пленочном движении жидкости, поэтому создание пленочного движения жидкости следует рассматривать как важнейший путь интенсификации процесса. При взаимодействии несмешивающихся жидкостей или жидкостей и твердых веществ хорошее контактирование является также одним из важнейших факторов. Интенсивность контакта зависит от консистенции реагирующих веществ. [c.221]

    Основное внимание мы уделим факторам, влияющим на энергию, необходимую для поглощения у-квантов образцом. Существуют три типа взаимодействий ядер с химическим окружением, которые приводят к небольшим изменениям энергии, необходимой для поглощения 1) сдвиги резонансных линий за счет изменения в электронном окружении, 2) квадрупольные взаимодействия и 3) магнитные взаимодействия. Эти эффекты дают информацию, имеющую значение с химической точки зрения, и будут рассмотрены в первую очередь. [c.287]

    Факторами, влияющими на процессы выпечки, являются также параметры печной среды — температура и влажность. Температура печной среды зависит от типа печи, вида выпекаемого хлеба (вид, материал, масса), зоны и находится в пределах 210—298 °С. Степень относительной влажности печной среды зависит от стадии выпечки. На первой стадии процесса влажность колеблется от 32 до 72%, тогда как иа второй стадии она составляет 19—43%. Степень увлажнения среды на первой стадии процесса должна быть больше, потому что интенсивность конденсации пара на поверхности тестовой заготовки выше. При этом имеет место поглощение влаги из печной среды рабочей камеры за счет конденсации пара на поверхности с последующей ее сорбцией в поверхностных слоях выпекаемого теста. Чем выше влажность среды, тем меньше потери в массе (упек). Необходимая влажность печной среды обеспечивается подачей пара или воды в количествах 70—150 кг/т продукта. Состав газовой среды меняется в зависимости от конструкции печи, вида и массы выпекаемого хлеба, температуры. Например, при выпечке городской булки массой 0,8 кг газовая среда и.меет следующий состав воздух — 64,8%, пары воды —35%, пары спирта — 0,2% [24], [c.50]

    При более строгой постановке задачи следует учитывать поглощение энергии в волновом процессе, так как циклическая деформация является необратимой. Необратимость приводит к дисперсии - зависимости скорости звука от частоты. Основные факторы, вызывающие эффект необратимости, следующие вязкость, теплопроводность, диффузия, химические реакции и конечность времени обмена энергией между различными степенями свободы молекул [19]. [c.31]

    Вообще-то поглощающие горизонты получили свое название еще до того, как в них стали сбрасывать стоки, При бурении скважин с промывочной жидкостью (господствующий сейчас вид бурения) в некоторых горизонтах происходит поглощение этой жидкости. Такие горизонты при бурении ведут себя как трудно проходимые, нередки и провалы бурового инструмента. При сбросе стоков поглощающие зоны из вредного фактора превращаются в полезный, [c.94]

    Чтобы оценить влияние энтропийного фактора, надо учесть, что изменения энтропии более значительны по абсолютной величине обычно в тех процессах, при которых происходит значительное изменение объема газообразных продуктов, в первую очередь выделение или поглощение газов. Наоборот, в реакциях, в которых [c.269]


    Обратимся теперь к вопросу о причинах этих отклонений. Наиболее важными факторами в этом отношении являются обычно процессы, связанные с изменением средней величины частиц жидкости. Сюда относится как уменьшение величины частиц вследствие частичной или полной диссоциации тех ассоциированных комплексов, которые могли быть в одном из компонентов в чистом состоянии, так и укрупнение частиц вследствие образования соединений между молекулами компонентов. Уменьшение ассоциации вызывает поглощение теплоты при образовании раствора, облегчает испарение молекул и приводит к положительным отклонениям давления пара. Образование же соединений вызывает противоположные эффекты. Нередко уменьшение ассоциации и образование соединений происходят одновременно, когда один или оба компонента раствора ассоциированы в чистом состоянии и при образовании раствора наряду с изменением средней величины комплексов, состоящих из молекул одного вида, возникают комплексы из молекул различных видов, часто обладающие переменным составом и не отвечающие каким-нибудь простым стехиометрическим соотношениям. [c.311]

    Эдмистер предложил метод расчета абсорбции жирных углеводородных газов на основе использования эффективного фактора абсорбции, как функции коэффициента конечного поглощения, и с учетом изменения материальных потоков и температуры по высоте аппарата. [c.84]

    Протекание рассматриваемой реакции в обратном направлении сопровождае 1 ся поглощением теплоть (А//> 0) энтропия системы возрастает (Д5> 0). Таким образом, движущей силой этого процесса Я ляется энтропийный фактор. [c.177]

    Спектр ЭПР атома водорода показан на рис. 9.5. С хорощим приближением величину 3-фактора можно определить из напряженности поля, соответствующего точке. х, которая лежит посередине между двумя жирными точками, соответствующими максимумам полос поглощения. Сверхтонкое расщепление а/дР — это расстояние между максимумами полос поглощения, измеренное в эрстедах. Обь1чно из спектра нельзя непосредственно определить знак а. Расщепление, показанное на рис. 9.2, говорит о том, что у а положительный знак. Если а — отрица- [c.16]

    В связи с широким использованием счетных машин в анализе работы сложных колонн имеет смысл привести удобную и вполне строгую методику расчета, основанную на использова-пип так называемых факторов абсорбции или поглощения, предложенную Эдмистером. [c.418]

    Выражения (VIII.123) и (VIII.124) являются основными уравнениями, которые, будучи применены к соответствующим секциям колонны, позволяют получить надлежащие расчетные соотношения, выраженные через факторы поглощения. [c.419]

    Из уравнений ( 111.132) и ( 111.133) непосредственно следует, что рассматриваемый метод весьма сходен с потарелочным расчетом Тиле и Геддиса, ибо в конечном счете он сводится к определению количеств и составов целевых продуктов разделения по заданным числам тарелок, флегмовому числу и градиенту температуры. Поэтому в пределах исходных допущений метод факторов поглощения и отгона является столь же точным, как и расчет от тарелки к тарелке . [c.421]

    Далее для каждого компонента на каждой тарелке укрепляющей секции рассчитывается значение фактора поглощения А,-, а на каждой тарелке отгоппо11 секции значение фактора поглощения 5.  [c.422]

    Далее для каждо1 о комиоиента на ка> дой тарелке укрепляю-пщи секции рассчитывается зиачение фактора поглощения Лг, а на ка/кдой тарелке отгонной секции значение фактора ногло-П1ения 5г.  [c.424]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]

    Применяемый метод расчета зависит от двух факторов 1) числа анализируемых образцов и 2) числа компонентов в образце. Вследствие того, что число компонентов смеси, которые могут быть определены спектрофотометрически по спектрам поглощения в ультрафиолете, обычно мало (меньше шести), первый фактор является главным. Исчерпывающая сводка различных методов расчета имеется в литературе [15]. [c.281]

    Хотя и появилось несколько статей, пытающихся показать влияние структуры на скорость реакции, однако хороших кинетических данных пока еще не имеется. Даже суммарные скороети реакции, измеряемые по падению давления, трудно определить ввиду возможности побочных реакций, сопровождающихся поглощением газа, а также наличия некоторых неизвестных факторов, связанных с состоянием аппаратуры, что делает трудной задачей воспроизводимость опытов. [c.294]

    ДытнерскийЮ. И.,БреховскихН.С., ЖПХ, 43, 174 (1970). Расчет фактора ускорения для абсорбции, сопровождаемой химической реакцией, на примере поглощения сернистого газа растворами едкого натра. [c.270]

    Существенным осложняющим фактором, который необходимо принимать во внимание нрн решении практических задач гетерогенного катализа, является дезактивация, или отравление , катализатора в процессе его промышленной эксплуатации. Под контактным отравлением понимаются все с.пучаи понижения активности катализатора иод влиянием поглощения посторонних веществ. Механизм этого понижения может быть весьма различен. Отравление может быть обусловлено а) невыгодным для катализа изменением адсорбционных и кинетических констант поверхности из-за внедрения яда в поверхностный слой решетки катализатора б) выводом из процесса отдельных участков в силу адсорбции на них яда в) макроскопической блокировкой, обусловленной заливанием пор и капилляров легко конденсирующие мися жидкостями или образованиед корки из твердых продуктов реакции, затрудняющей доступ к активной поверхности. [c.13]

    Если электрон делокализован на нескольких неэквивалентных атомах, общее число ожидаемых. линий получают, умножая числа линий, ожидае.мые для каждого атома. Схема, представленная на рис. 9.10 для электрона, делокализованного на двух неэквивалентных ядрах с / = 1, часто используется для того, чтобы показать возможное расщепление. Три линии в ряду А представляют расщепление линии ЭПР на ядре с / = 1 и константой СТВ а. Каждая из этих линий расщепляется на три компоненты в результате делокализации электрона на втором неэквивалентном ядре с / = 1 н константой СТВ а, что приводит к девяти линиям (ряд Б). В последующих разделах для интерпретации спектров используется схема, аналогичная приведенной на рис. 9.Ш. Форма спектра и pa тoянtfe между линиями в нем будут зависеть от резонансного поля, -фактора и констант СТВ а и а. Часто в наблюдаемом спектре не удается обнаружить всех ожидаемых линий, поскольку щирина линий велика по сравнению с а/др и две соседние линии могут не разрешаться. Например, спектр, приведенный на рис. 9.11, может быть обусловлен поглощением гипотетического радикала Н -Х" Н —X". где /= 1 для X. [c.20]

    В нефтяном анализе спектроскопия ЭПР до сих пор использовалась главным образом при изучении асфальтово-смолистых и металлсодержащих соединений. Данные ЭПР указывают на присутствие в нефтях стабильных радикалов в концентрациях Ю — 10 г-1, растущих симбатно общей ароматичности нефтяного концентрата [12, 247—250]. В ЭПР спектрах ВМС нефти обычно обнаруживаются два типа поглощения синглетная полоса с ё -фак-тором 2,0025, близким к -фактору неспаренного электрона <2,0032), и мультикомпонентная сверхтонкая структура (СТС) резонансного поглощения с -фактором 2,0183, соответствующая ионам У+ в составе ванадилпорфириновых комплексов.Обнаружены также сигналы с -фактором 1,9995, указывающие на присутствие парамагнитных ядер Со и Си [247, 251, 252]. Сходство СТС асфальтенов и синтетического этиопорфиринового ванадильного комплекса послужило основой для ряда способов определения концентрации ванадия в нефти методом ЭПР [251, 253 и др.]. [c.32]

    Ясно, что величина отдельных ароматических ядер в 3—4 бензольных цикла является лишь средней и этот факт вовсе не исключает возможности присутствия в молекулах ВМС некоторых количеств моно- и бициклоароматических фрагментов, а также более высококонденсированных ароматических систем, обусловливающих плавное снижение поглощения в электронных спектрах вплоть до 500—600 нм. В ЭПР спектрах асфальтенов и смол, как правило, наблюдается довольно интенсивный одиночный сигнал с g-фактором, равным 2,003, т. е. близким к -фактору свободного электрона (g = 2,0023) [221, 914, 1053—1060], а также набор линий СТС, соответствующих, ионам V+ в веществе. Концентрация парамагнитных центров (стабильных радикалов) в молекулах асфальтенов меняется, по ЭПР данным, от 10 до 10 г и растет симбатно ароматичности вещества. Эти экспериментальные факты также свидетельствуют о том, что в молекулах присутствуют достаточно развитые полисопряженные системы, по которым дело-кализованы электроны. [c.195]

    При поглощении следующих порций газа при более высоких давлениях интенсивность этих эффектов падаех, и преобладающее значение пр1-1обретают физические факторы. В последнем случае адсорбция молекул газа вызывается тем, что поверхностные атомы или ионы адсорбента создают в поверхностном слое силовое поле, в котором конденсация молекул окруноющего газа происходит значительно легче, чем в отсутствие поля. [c.372]


Смотреть страницы где упоминается термин Поглощения фактор: [c.426]    [c.315]    [c.31]    [c.358]    [c.22]    [c.6]    [c.401]    [c.254]    [c.148]   
Растровая электронная микроскопия и рентгеновский микроанализ том 2 (1984) -- [ c.2 , c.14 , c.76 , c.107 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбционные факторы поглощение

Ослабление интенсивности рентгеновских лучей при прохождении сквозь кристалл. Фактор поглощения

Расчет сложной колонны при помощи факторов поглощения и отгона

Факторы, влияющие на устройство фотохимических приборов Влияние коэффициента и типа поглощения

Факторы, способствующие поглощению газов твердыми телами

Форма линии ЭПР-поглощения при анизотропии g-фактора

Электронные спектры поглощения гетероциклических соединений Мейсон) Факторы, определяющие поглощение света

ЭндоциТоз поглощение белков и факторов роста

факторах, определяющих степень поглощения бензола

факторах, определяющих степень поглощения бензола коксового газа поглотительными маслами



© 2025 chem21.info Реклама на сайте