Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт веществ механизм

    Геологическая летопись показывает, что такой механизм транспорта веществ действует уже по меньшей мере 3,8 миллиарда лет. Новые отложения возникают как из более старых по- [c.67]

    Транспорт веществ через цитоплазматическую мембрану обеспечивают механизмы, из которых далеко не все изучены. Сравнительно легко понятна диффузия веществ по градиенту концентрации. Так как клеточной мембране присуще свойство полупроницаемости, вещества могут попасть в клетку, если их концентрация в клетке ниже, чем в окружающей среде. Одно- [c.16]


    Современные представления о проблеме транспорта веществ через мембраны (включая мембраны эпителиальных клеток кишечника) не позволяют точно охарактеризовать молекулярный механизм транспорта аминокислот. Существует два представления, по-видимому, дополняющих друг друга о том, что требуемая для активного транспорта энергия образуется за счет биохимических реакций (это так называемый направляемый метаболизмом транспорт) или за счет энергии переноса другого транспортируемого вещества, в частности энергии движения ионов Na (или других ионов) в клетку. [c.426]

    Как известно, в случае пассивной диффузии вещества движущей силой служит только фадиент его концентрации (Ац) вне и внутри клетки. Если подобный фадиент существует и в процессе активного транспорта вещества, он может вносить определенный вклад в общую движущую силу процесса, однако этот вклад не является определяющим. В большинстве случаев перенос вещества по механизму активного транспорта происходит против концентрационного фадиента этого вещества. [c.103]

    Плазматическая мембрана играет важнейшую роль в обмене ве-ш еств. Она служит осмотическим барьером клетки и контролирует как поступление веществ внутрь клетки, так и выход их наружу. В мембране имеются механизмы активного транспорта и системы субстрат-специ-фичных пермеаз. По-видимому, липидная пленка элементарной мембраны пронизана мостиками (или каналами) из белков, и именно эти белки служат порами, через которые осуществляется регулируемый транспорт веществ. [c.24]

Рис. 3.1. Основные механизмы транспорта веществ у микроорганизмов 46 Рис. 3.1. Основные <a href="/info/1381656">механизмы транспорта веществ</a> у микроорганизмов 46
    Назовите известные механизмы транспорта веществ в клетку. [c.71]

    В работах [8—10] обсуждается еще один механизм, приводящий к уравнению (1) — сочетание поверхностных процессов с растворением, даже если поверхность однородна, а зерна монодисперсны. Были рассмотрены закономерности кинетики взаимодействия между газом и твердым телом, когда одновременно идут процессы транспорта вещества в газовой фазе, адсорбции, внедрения (перехода из адсорбированного состояния в растворенное, с образованием адсорбционного слоя в твердой фазе  [c.255]


    При протекании на поверхности катализатора химического процесса происходит расходование исходных веществ и образование продуктов реакции. Пополнение первых и удаление вторых происходит за счет транспорта веществ из объема газовой фазы и обратно. Каков же механизм этого транспорта Если в объеме газовой фазы выравнивание концентраций может происходить за счет перемешивания среды, то вблизи поверхности слой газа (или жидкости) теряет свою подвижность и перенос вещества может осуществляться почти исключительно за счет диффузии молекул данного вещества сквозь приповерхностный слой среды. Тем более это относится к переносу веществ в порах катализатора, в которых газовый поток илн вовсе [c.141]

    Что касается механизма транспорта веществ, то различают ряд различных процессов, два из которых способны обеспечивать только транспорт, но не накопление веществ в клетке им можно противопоставить процессы активного транспорта, приводящие к аккумуляции веществ внутри клетки (рис. 7.18 и 7,19). [c.257]

    В остальном поглощение веществ клетками-процесс очень сложный и пока еще плохо изученный. Многие метаболические эффекты торможения и явления конкуренции между одновременно доступными субстратами связаны, по-видимому, с особенностями регуляторных механизмов, которые проявляются уже в процессах транспорта веществ. [c.261]

    Транспорт вещества через биологические мембраны может осуществляться по нескольким механизмам — пассивная проницаемость, облегченный транспорт, активный транспорт и транспорт в объем. [c.327]

    Эти идеи составляют основу диффузионной теории, главной особенностью которой является полная независимость от конкретного механизма реакции. Она достаточно обща и может быть применена без риска во всех случаях, когда процессы, обеспечивающие транспорт вещества, неизвестны. [c.307]

    В то время как механизм пассивного транспорта, как правило, известен, механизм сопряжения транспорта вещества с обеспечивающей этот процесс энергией химической реакцией остается не ясным. Вероятно, при функционировании Na K " -АТРазы происходит временное фосфорилирование белка переходящими с АТР-ионами фосфата. Это в свою очередь вызывает изменение конформации фер.мента, приводящее к переносу натрия из клетки в межклеточную жидкость, а калия в противоположном направлении (рис. 99). [c.232]

    Мы обсудим здесь транспорт веществ через плазматическую мембрану, отметив, что аналогичный характер носит и транспорт через мембраны клеточных органелл. Существует четыре основных механизма для поступления веществ в клетку или выхода их из клетки наружу диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т. е. не требуют затрат энергии два последних — активные процессы, связанные с потреблением энергии. [c.186]

    В результате активного транспорта веществ в клетки-спутницы осмотический потенциал в них сильно понижается. Это стимулирует поступление в них воды путем осмоса, повышение давления и движение растворов (в том числе и раствора сахарозы) по механизму объемного по- [c.136]

    По мере увеличения размеров и сложности организации животных возрастают количества веществ, поступающих в организм и подлежащих выводу из него. Возрастают также и расстояния, которые эти вещества должны преодолевать внутри тела, в связи с чем возникает необходимость в более эффективном способе их транспортировки. Таким способом становится перенос их с током жидкости, или перенос по механизму объемного потока (см. начало гл. 13, а также табл. 13.1). Существуют две циркуляторные системы, обеспечивающие транспорт веществ между различными частями организма, а именно кровеносная (сердечно-сосудистая) и [c.139]

    В процессе обмена веществ происходят конформационные изменения макромолекул, синтез и распад различных веществ, образование и потребление энергии, которые обеспечивают проявление физиологических функций организма. Изменение конформации основных белков мышц — актина и миозина, а также использование химической энергии АТФ лежат в основе сократительной функции мышц. Эти процессы наряду с механизмами энергообразования, биосинтеза белка, транспорта веществ и другими биохимическими реакциями существенно изменяются при воздействии различных физических нагрузок и в ходе адаптации к ним, что влияет на физическую работоспособность и состояние здоровья спортсмена. [c.24]

    Внутреннюю среду организма составляют биологические жидкости кровь, лимфа, цитозоль, межклеточная жидкость, кишечный сок, моча, слюна и др. Они содержат около 90 % воды. В воде растворены или распределены разные по величине и свойствам молекулы химических веществ, их комплексы, клеточные органеллы, клетки. Все составные внутренней среды находятся в постоянном движении. Движение, или транспорт веществ осуществляется разными механизмами и способствует поддержанию постоянства химического состава (гомеостаза) внутренней среды организма. [c.74]


    Механизмы транспорта обеспечивают процессы возбуждения в нервной и мышечной тканях, передачу нервного импульса, запуск и генерацию со-краш,ения мышц, поддержание кислотно-основного равновесия и многие другие процессы. Остановимся на характеристике процессов транспорта веществ в организме. [c.75]

    Механизмы транспорта веществ [c.76]

    Активный транспорт веществ — это движение молекул через мембраны клеток против градиента концентрации с использованием энергии АТФ и веществ-переносчиков. Химическая энергия способствует движению веществ в сторону высокой их концентрации, откуда они стремятся диффундировать согласно механизму диффузии. Благодаря активному транспорту поддерживается разность концентраций ионов во внутриклеточной и внеклеточной жидкостях (рис. 30). [c.79]

    В настоящее время мы уже обладаем довольно солидным запасом зпа-ний о химической структуре, процессах биосинтеза я распада ФЛ в клетках нервной ткани, их распределении в различных структурах, интенсивности их обмена как в нормальных, так и в патологических условиях. Но и сейчас мы еще мало можем сказать о конкретной роли ФЛ в возникновении и проведении нервного импульса, в изменениях уровня функциональной активности нервных клеток, о механизмах их участия в транспорте веществ через биологические мембраны. [c.73]

    Роль транспорта веществ через мембраны имеет огромное значение в жизнедеятельности клеток и организма в целом. Большинство процессов, связанных с обеспечением клетки энергией и избавлением ее от продуктов распада, основано на описанных выше механизмах. Кроме того, специальные функции клеточной мембраны заключаются в получении клеткой внешних сигналов (примерами могут служить рассмотренные в главе 9 взаимодействия клетки с гормонами). [c.448]

    Кинетические характеристики для процесса, протекающего в области температур 400-600°С, совпадают с литературными данными для процессов уг-леродообразования, протекающих по дендритному механизму. Каталитический процесс образования углеродньк отложений в области температур 400-500°С лимитируется диффузионными факторами, вызванными транспортом вещества к поверхности катализатора и транспортом продуктов реакции с поверхности катализатора или другими факторами, специфичными для дендритного механизма. [c.109]

    Уменьшение транспорта вещества из объема раствора к поверхности электрода наблюдается и при торможении движений первого рода адсорбированным ПАОВ. Однако механизм их действия, по-видимому, сложнее. Помимо эффекта торможения, вызванного переносом ПАОВ вдоль поверхности, должен иметь место эффект снижения скорости движений из-за выравнивания вследствие адсорбции величин поверхностного натяжения в разных точках капельного электрода, имеющих разные значения потенциала, что вызвано различием в величинах токов. Эти различия в плотности тока на разных участках капли вызываются как неодинаковой радиальной скоростью движения разных участков поверхности капельного электрода, так и экранировкой верхней части капли срезом капилляра. Неоднородность в распределении тока вдоль поверхности электрода является причиной падения потенциала вдоль границы электрод/раствор и, следовательно, в отсутствие адсорбции ПАОВ вызывает появление значительных градиентов поверхностного натяжения и, как следствие, движений поверхности жидкого электрода первого рода. [c.146]

    Любая электрохимическая реакция протекает на поверхности раздела фаз электрод — раствор и является гетерогенной. Как гетерогенная химическая реакция она также является стадийной, текущей через ряд последовательных стадий 1) транспорт вещества к электроду — к зоне реакции 2) собственный электрохимический акт взаимодействия реагирующей частицы с электродом (стадия разряда — ионизация) 3) отвод образовавшихся продуктов реакции от поверхности электрода. Первая и третья стадии имеют одни и те же закономерности и. чазываются стадиями мас-сопереноса, осуществляемыми за счет малых коэффициентов миграции и конвекции. Для всех электродных процессов наличие этих трех стадий обязательно. Однако наряду с этим ряд электрохимических процессов может осложняться предшествующими и последующими химическими реакциями, протекающими в объеме раствора или на поверхности электрода. Кроме того, в ходе электрохимической реа1 ции может происходить передвижение частиц по поверхности электрода (стадия поверхностной диффузии). Скорость электрохимического процесса, состоящего из ряда последовательных стадий, определяется наиболее замедленной, лимитирующей стадией. Для установления природы лимитирующей стадии, скорости ее течения, механизма электродного процесса, необходимо знать закономерности, которым подчиняются поляризационные характеристики / и Л . [c.458]

    В настояпд ее время в связи с внедрением в лабораторную и промышленную практику твердых высокопорыстых катализаторов особое значение приобретает изучение транспорта реагирующего вещества внутри каталитической гранулы. Известно, что определяющим механизмом транспорта вещества к впутренией поверхности катализатора является диффузия, причем диффузионный перенос может осуществляться по различным законам. [c.3]

    Активный транспорт веществ осуществляется такими же механизмами, но протекает против концентрационного градиента и для своего осуществления должен быть сопряжен с энергодающим процессом. Основным источником энергии для активного транспорта является АТФ. Поэтому, как правило, эти системы представляют собой АТФазы. Примером систем активного транспорта ионов является Ма /К -АТФаза плазматических мембран животных клеток, которая выкачивает из клетки ионы натрия в обмен на ионы калия, затрачивая на выполнение этой работы АТФ в стехиометрии ЗМа /2К /1АТФ. Са -АТФаза осуществляет активный транспорт кальция через мембрану со стехиометрией 2Са /1АТФ. [c.304]

    Существует несколько форм транспорта веществ через митохондриальную мембрану. Прежде всего это пассивный транспорт незаряженных молекул, таких, как СО2, О2 и некоторые другие. Кроме того, в незаряженной форме через мембраны митохондрий проходят ионы аммония в виде аммиака и некоторые цвиттери-онные соединения, например цитруллин. Существуют специальные системы, обеспечивающие согласованный встречный транспорт анионов. Так, по-видимому, согласованно переносятся анионы НзРО и ОН" и ряд других пар анионов. Некоторые заряженные частицы предварительно превращаются в незаряженные молекулы, как это, например, имеет место при переносе ацильных остатков с помощью карнитина. Этот механизм избавляет митохондрии от необходимости транспортировать такие громоздкие заряженные молекулы, как ацильные производные кофермента А. [c.433]

    Дайте определение пассивного и активного транспорта веществ вклетку и поясните, чем различаются эти механизмы. [c.71]

    При анализе процесса на крупногранулированном цеолитсодержащем катализаторе, принимая во внимание наличие двух каталитических систем (матрица и наполнитель), различающихся активностью и пористой структурой, традиционные методы расчета транспорт -ных явлений в зерне оказываются неприменимыми [55 -573, Известно, [58], что большинство исследователей различных процессор рассматривают пористую струк -туру зерна как неоднородно равномерную и представ -ляют модель как квазигомогенную, относя константу скорости к единице объема и пользуясь понятием эффективного коэффициента диффузии. Модель зерна цеолитсодержащего катализатора требует [56,57]усложнения с учетом того, что общую пористость зерна следует рассматривать как сумму долей свободных объе -MOB, приходящихся на долю матрицы и наполнителя. Принимая, что матрица и наполнитель являются однородно-пористыми и диффузия в порах протекает по кнудсеновскому механизму, авторы работы [57] приходят к выводу, что при соотношении долей свободных объемов матрицы и наполнителя, близком к 15j диффузионный поток в порах матрицы должен превышать поток в порах наполнителя приблизительно в 60 раз, а также к тому, что общий подвод вещества к внутрен -ней поверхности цеолитсодержащего катализатора определяется транспортом вещества в порах матрицы. [c.35]

    Рнс. 7.18. Схема четырех механизмов транспорта веществ в клетку. Розовый кружок-транспортируемый субстрат с-пермеаза (белок-переносчик) с с серым прямоугольником-энергизованный переносчик Ф Я фосфоенолпируват ТБ-термостабильный белок. Пояснения в тексте. [c.258]

    Из работ по теплопередаче в распылительных колоннах [27, 28] можно заключить, что главный механизм обратного перемешивания обусловлен транспортом (вещества в кильватере капель, что подтвердило найденное Hendrix [32] для массопере-дачи. Mixon [30] исследовал продольное перемешивание в распылительных колоннах при высоких значениях удерживающей способности дисперсной фазы. [c.108]

    Мы рассматривали до сих пор явленпя проппцаемостп оболочки клеток. Однако активный перенос имеет не меньшее значение для процессов, протекающих внутри клетки. В последнее время высказывается мнение о том, что транспорт веществ между структурными элементами клетки представляет собой один пз механизмов автоматического регулирования внутриклеточных процессов обмена веществ. Именно через активный транспорт происходит взаимодействие структурных элементов клетки между собой. В этом смысле более всего изучены митохондрии. В митохондриях сосредоточена ферментативная система, генерирующая АТФ за счет энергии дыхания и представляющая собою цепь ферментов дыхания и цепь ферментов сопряженного дыхательного фосфорилирования. Тело митохондрий построено нз мембран, заполненных внутри жидкой фазой. Само пх вещество, состоящее из линонротеидов является разделительной мембраной, через которую осуществляется активный перенос субстратов дыхания, АТФ и других веществ. Продуктом окислительного фосфорилирования, вырабатываемым внутри митохондрий для покрытия энергетических затрат клетки является АТФ. [c.183]

    Целью исследования является физическая интерпретация процессов транспорта вещества (выяснение механизма и стадии, лимитирующей общую скорость) и определение коэффициентов скорости. В общем случае решение этой задачи затруднено из-за комплексности явлений транспорта (их многообразия и взаимного перекрывания). При изучении кинетики сорбции газа макроскопическим образцом цеолита в виде прессованного тела или слоя насыпанных кристаллов, обладающим помимо микропористой структуры также вторичной (макро-) пористостью, необходимо учитывать следующие стадии процесса 1) приближение сорбтива ко внешней поверхности образца 2) преодоление пленки на внешней поверхности образца (возможен транспорт в пленке вдоль поверхности) 3) транспорт во вторичной пористой структуре (возможны различные механизмы) 4) преодоление сопротивления транспорту на внешней поверхности цеолита (возможен транспорт вдоль внешней поверхности кристаллов) 5) транспорт в микропористой структуре кристаллов цеолита. [c.67]

    Функция кровеносной системы — поддержание быстрого объемного потока веществ между частями тела на расстояниях, слишком больших для транспорта по механизму диффузии. По достижении места своего назначения вещества должны бьггь способны проникать через стенки сосудов в соответствующие органы или ткани. Сходным образом вещества, продуцируемые этими органами или тканями, также должны поступать в циркуляторную систему. Иными словами, с системой транспорта веществ по механизму объемного потока связаны специализированные обменные системы. [c.139]

    Использование энергии АТФ. Химическая энергия АТФ постоянно используется в клетках организма для поддержания всех энергопотребляемых биологических процессов (рис. 14). Так, в скелетных мышцах АТФ обеспечивает энергией процессы мышечного сокращения и расслабления. При сокращении энергия гидролиза АТФ используется для взаимодействия сократительных нитей актина и миозина, их передвижения (скольжения). Сократительные белки превращают химическую форму энергии в механическую энергию мышечного сокращения. При расслаблении энергия АТФ используется для активного транспорта ионов Са " через мембраны ретикулума против градиента его концентрации (механизмы активного транспорта веществ рассмотрены в главе 5). [c.43]

    Существует четыре основных механизма транспорта веществ, которые обеспечивают движение молекул в биологических жидкостях и через клеточные мембраны. Это диффузия, осмос, активный транспорт, экзоцитоз и эндоцитоз (рис. 26). Дйфф йя и1к мос — пассивный транспорт, так как движение веществ осуществляется без использования энергии два последних механизма — активный транспорт, так как движение веществ осуществляется за счет энергии АТФ. [c.75]

    Последние десятилетия характеризуются бурным внедрением в биологию наук, ранее довольно далеких от изучения живых объектов — химии, физики, математики и т. п. Возникла новая отрасль знания — молекулярная биология, которая на глазах одного поколения добилась ноистине гигантских успехов в познании материальных основ жизни. Биосинтез белка, передача наследственных признаков, молекулярные основы болезней, строение белков и нуклеиновых кислот — еще совсем недавно эти проблемы даже не были сформулированы, а сейчас успешно изучаются. Наука подошла вплотную к таким основополагаюш,пм проблемам, как превраш,ение энергией в живых системах, строение и механизм действия ферментов, активный транспорт веществ в организмах, структура и функции липопротеидных мембран, фотосинтез. [c.5]

    Другие типы АВП ярко проявляются в процессах морфогенеза при диффе-ренцировке тканей. Материальную основу здесь составляют генетические системы биосинтеза белка и активный транспорт веществ через клеточные мембраны. В сообществах организмов в ряде случаев взаимодействие клеток осуществляется посредством выделяющихся веществ-аттрактантов (циклическая АМФ). Взаимное движение клеток к источнику сигналов и их агрегация носит волновой характер. В эмбриональных структурах этот механизм во многом определяет движение клеток при формировании тканей. В основе движения в стенках каналов кровеносных сосудов, механических перемещений клеток по плоской поверхности лежат также АВП. [c.84]

    Для объяснения механизма множественного действия гормонов на организм предложено несколько теорий. Хотя разные стероидные гормоны могут действовать по-разному, их удобно тем не менее рассматривать как класс веществ с близкими свойствами. Было высказано предположение, что 1) гормоны действуют на уровне транспорта веществ к тканям-мишеням 2) гормоны взаимодействуют с белками, такими, как ферменты, лимитирующие скорость тех или иных процессов, регулируя тем самым физиологические функции этих б .иков 3) гормоны контролируют передачу генетической информации, хранящейся в хромосомах. Третья теория, иллюстрируемая более детально на примере действия гормонов линьки насекомых, по-видимому, наилучшим образом соответствует наблюдаемым фактам. Однако многое еще предстоит выяснить, прежде чем мы сможем составить ясное представление о молекулярных механизмах гормональной активности особендо это справедливо в том, что касается прогестерона. [c.71]


Смотреть страницы где упоминается термин Транспорт веществ механизм: [c.19]    [c.190]    [c.177]    [c.116]    [c.116]    [c.101]   
Биофизика (1983) -- [ c.129 , c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Мембрана механизм транспорта веществ



© 2025 chem21.info Реклама на сайте