Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность определение

    На рис. 2 приведены для железа в нейтральных аэрированных растворах кривые изменения степени пассивности, определенной [c.14]

    При статистическом (пассивном) методе используются дан-1ше об изменениях входных - X и выходных - У параметров объекта, которые представляют собой случайные величины. Определение статических характеристик при этом сводится к нахождению связи между случайными величинами и к оценке достоверности этой связи. Статистический метод базируется на принципах теории вероятности. [c.22]


    Пассивных наблюдений часто недостаточно для определения оптимальных условий проведения процесса прежде всего потому,, что обычно значения независимых переменных в установившемся процессе колеблются в сравнительно узких пределах, и это не дает возможности установить, какое же влияние на ход процесса такие переменные будут оказывать при более широком диапазоне их изменения. Кроме того, на процесс влияет большое число факторов, и их взаимосвязь затрудняет анализ информации. [c.26]

    Следует отметить, что проблему защиты от коррозии нельзя решать, не учитывая определенной связи коррозии с пассивностью. Если коррозия является процессом самопроизвольного растворения металлов, то пассивирование связано с потерей металлом этой способности. Следовательно, для предохранения металла от коррозии необходимо перевести его в пассивное состояние. [c.640]

    Настоящий стандарт распространяется на нефтяные вязкие и жидкие дорожные битумы н устанавливает следующие методы определения сцепления дорожных битумов с минеральными материалами— мрамором и песком метод А — пассивное сцепление и метод Б — активное сцепление. [c.400]

    Знания и данные. Функционирование интеллектуальной системы обеспечивается интеллектуальным банком данных, который является ее обязательным компонентом и условно разделяется на базу знаний (БЗ) и базу данных (БД). Четкой границы между понятиями знание и данные нет. Например, данные несут в себе определенные знания. Можно сказать, что БЗ есть совокупность сведений о свойствах предметной области (ПО), а БД — о состоянии ПО. В отличие от данных, которые всегда пассивны, для знаний характерны активность и связность. Активность про- [c.41]

    Использование методов математической статистики для обработки результатов пассивного (непланируемого) эксперимента не всегда позволяет установить истинные связи между параметрами процесса. Наиболее существенными причинами этого являются использование неточных результатов слишком узкий или, наоборот, слишком широкий диапазон варьирования переменных неверное определение числа входных переменных ошибки в их измерении. Анализ около 100 уравнений регрессии, полученных обработкой пассивного эксперимента, показал, что они не несут никакой информации о процессе из-за указанных недостатков [13]. Многие из этих недостатков могут быть исключены при активном (планируемом) эксперименте. [c.49]

    Явление, удовлетворяющее этому определению пассивности, наблюдается при окисле Нии ряда металлов (Си, Fe, Ni, Zn и др.) в потоке газа при высоких температурах и низких давлениях газа-окислителя (рис. 92). При этих условиях, когда металл подвергается воздействию смеси Oj-Аг, содержащей малые количества кислорода, атомы металла переходят в результате испарения в газовую среду и диффундируют в пограничном слое толщиной б [c.132]


    Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок ВЕ на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко обр E>EF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных. [c.197]

    ОПРЕДЕЛЕНИЕ ПАССИВНОСТИ МЕТАЛЛОВ [c.302]

    Пассивность наблюдается в определенных условиях у титана, алюминия, хрома, молибдена, магния, никеля, кобальта, железа и других металлов. Очень многие металлы в той или иной степени в зависимости от условий склонны пассивироваться. [c.303]

    Вещества или процессы, вызывающие в определенных условиях наступление пассивного состояния металлов, называют пассивирующими факторами или пассиваторами. [c.305]

    Пассивное состояние металлов вызывается окислителями или анодной поляризацией. Однако устойчивость пассивного состояния часто бывает ограничена определенной концентрацией окислителя или значением потенциала металла при его анодной поля- [c.312]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии депассиваторов) анодная поляризация металла от внешнего источника постоянного электрического тока (см. с. 321) может вызвать наступление пассивного состояния при достижении определенного значения эффективного потенциала металла и тем самым значительно снизить коррозию металла. Этот эффект также находит практическое использование в виде так называемой анодной электрохимической защиты. [c.365]

    Расчет анодной защиты при помощи внешнего источника тока сводится к определению параметров источника постоянного тока для двух режимов его работы 1) при анодной пассивации защищаемой конструкции 2) при поддержании пассивного состояния конструкции. [c.365]

    Существенным недостатком хромоникелевых так же, как и хромистых, сталей является их подверженность в определенных условиях некоторым видам местной коррозии, связанным с местным нарушением пассивного состояния, в том числе и межкристаллитной коррозии. [c.421]

    Анодная пассивность. Поляризация анода может быть также вызвана образованием пассивных пленок на поверхности металла. При определенных условиях (при наличии в растворе окислителей и отсутствии ионов-активаторов) анодная поляризация облегчает наступление пассивного состояния и ионизация металла сильно тормозится. Этот процесс сопровождается значительной анодной поляризацией Д а, которая для некоторых металлов может превышать значение 1 в. [c.34]

    В соответствии с принципами создания коррозионно-стойких сплавов коррозионная стойкость нержавеющих сталей основана на переходе стали в пассивное состояние, в результате чего происходит торможение анодных процессов и образование в решетке сплава, при определенном его химическом составе, плоскости, обогащенной благородным элементом и осуществляющей стерический эффект зашиты. [c.40]

    Управление с пассивным накоплением информации (пассивно-адаптивные алгоритмы). Методы управления с пассивным накоплением информации могут оказаться оптимальными для определенного класса приводимых систем, в которых темп накопления информации не зависит от стратегии управления. Для неприводимых систем эти методы являются в принципе приближенно оптимальными. Известно большое число пассивно-адаптивных алгоритмов. Остановимся кратко на некоторых из них, предварительно определив понятие разомкнутого метода управления [100]. [c.130]

    Определение 1. Металл является пассивным, если он обладает значительной устойчивостью к коррозии в данной среде, т. е. способен к значительной поляризации весьма малым анодным током. [c.71]

    Определение 2. Металл является пассивным, если он обладает значительной устойчивостью к коррозии в данной среде, несмотря на выраженную термодинамическую склонность к реакции окисления. [c.71]

    Так, свинец, погруженный в серную кислоту, магний в воде или железо в ингибированной травильной кислоте будут называться пассивными по определению 2 — вследствие низких скоростей их коррозии, несмотря на значительную склонность к коррозии. Но по определению 1, эти металлы не являются пассивными, так как их коррозионные потенциалы относительно активны и поляризации не наблюдается, если эти металлы выступают как аноды в элементах. [c.71]

    Экспериментальные методы исследования объектов с цельв их математического описания можно разделить на регулярные (активные) и статистические (пассивные). Активный эксперимент требует изменения режимных параметров промышленного объекта, что не всегда возможно из-за жесткости ведения процесса. В этом случав исследоБатели используют статистические данные работы объекта за определенный период времени. [c.21]


    Простые системы — все признаки при распознавании однотипны (например, масса). Сложные системы — в качестве признаков могут использоваться различные физические и химические свойства, результаты прямых и косвенных измерений. Сложные системы наиболее типичны для прикладных исследований в каталитических процессах. Например, в [2] для решения задачи прогнозирования многокомпонентных катализаторов использовались экспериментальные данные пассивных опытов по определению селективности на основе смеси УзО, и М0О3 (в реакции парофазного контактного окисления 2,6-диметилииридина). В качестве признаков были выбраны 20 разнотипных характеристик. В их число вошли отношение радиуса атома металла к радиусу атома кислорода в твердом оксиде, плотность оксида, цветность оксида по трехбальной шкале, отношение кристаллических пустот к собственному объему молекулы оксида в кристаллической структуре, зонный фактор (расчетная величина), мольная магнитная восприимчивость твердого оксида и т. п. Сложные системы в зависимости от способа получения информации можно подразделять на одноуровневые и многоуровневые. [c.80]

    Рассмотренная стратегия принятия решений прп подборе состава катализаторов была также реализована и для случая прогнозирования многокомпонентных катализаторов ири отсутствии предварительных литературных данных на примере подбора катализаторов окисления 2,6-дил1етилииридина в 2,6-пиридиндиаль-дегид [53]. В качестве исходной информации были использованы данные пассивных опытов по определению селективности 24 мно- [c.90]

    Реальные процессы в реакционно-диффузионных мембранах гораздо сложнее рассмотренной модели, поскольку проницание компонентов взаимозависимо, например, через определенные звенья в цепи химических превращений. Кроме того, в мембране, наряду с сопряженным механизмом, существует пассивный несопряженный массоперенос химически несвязанного компонента газовой смеои. Это усложняет анализ энергетической эффективности мембранного процесса, но основной вывод сохраняет силу, а именно энергетическое сопряжение массопереноса и химического превращения позволяет радикально улучшить массообменные характеристики при сохранении достаточно высоких значений энергетической эффективности чем выше степень сопряжения, тем значительнее этот эффект. Справедливости ради следует отметить, что противоположные тенденции изменения массообменных и энергетических показателей мембранного процесса сохраняются в реакционно-диффузионных мембранах, хотя на более высоком уровне совершенства процесса. [c.253]

    Пассиваторами являются 1) окислители, например ННОд, МаМОз, МаМОз, Ма2 У04, К2СГО4, О2 2) анодная поляризация (т. е. окисление соприкасающейся с электролитом поверхности металла постоянным электрическим током) от внешнего источника постоянного электрического тока или при работе металла в качестве анода в паре с другим металлом, являющимся катодом, которая в подходящих условиях при достижении определенного значения эффективного потенциала металла Уме И соответствующей ему анодной плотности тока г а может вызвать наступление пассивного состояния металла. [c.305]

    Факторный анализ и планирование эксперимента. Исходной информацией при определении коэффициентов уравнения (2.22) является экспериментально-статистический материал о состоянии входных и выходных характеристик объекта. Различают пассивный и активный эксперимент. При пассивном эксперименте ставится большая серия опытов с поочередным варьированием каждой из переменных. Сюда относится также сбор исходного статистического материала в режиме нормальной эксплуатации промышленного -объекта. Активный эксперимент ставится по заранее составленному плану (планирование эксгюримента), при этом предусматривается одновременное изменение всех параметров, влияющих на процесс, что позволяет сразу установить силу взаимодействия параметров и поэтому сократить общее число опытов. В том и другом случае обработка опытных данных ведется методами корреляционного и регрессионного анализа [1, 10—15]. [c.92]

    Пассивность — это состояние относительно высокой коррозионной стойкости, вызванное торможением анодной реакции иоиизацни металла в определенной области потенциалов. [c.59]

    Явление пассивности металлов имеет большое практическое значение, так как коррозионная стойкость многих конструкционных металлов и сплавов определяется их способностью к пассивированию в определенных условиях. Для повышения стоЙ1сости некоторых металлов в технике широко используется способ ис кусственного пассивирования. [c.62]

    В растворах соляной кислоты титан корродирует с выделением водорода. При определенных концентрациях кислоты и температурах, в зависимости от доступа кислорода в коррозионную среду, титан может переходить из пассивного состояния в активное (рис. 188). В растворах соляной кислоты очень низких концентраций титан способен пассивироваться за счет образования защитных гидридпых пленок. Так, при 60 " С он устойчив в 75 растворах концентрации не выше 3%, а при 100° С —не выше 0,5% H I. С увеличением концентрации и повышением температуры соляной кислоты скорость коррозии титана увеличивается. [c.282]

    Поляризационные кривые позволяют изучить кинетику электродных процессов, величину защитного тока при электрохимической. чащите, явление пассивности и др. Существует два способа снятия поляризационных кривых гальваностатический и потенциостатический. Гальваностатический метод заключается в измерении стационарного потенциала металла при пропускании через него тока определенной плотности. По ряду значений потенциалов при соответствующих плотностях поляризующего тока строят кривые катодной или анодной поляризации, т. е. зависимости Е = /(г к) или Е = /(/,г). [c.342]

    Пассивность металлов. Состояние повышенной коррозионной устойчивости металлов в условиях, когда термодинамически возможно их взаимодействие с веществами, находящимися в окружающей среде, называется пассивным-Известна устойчивость железа в концентрированной HNO3, никеля и железа — в щелочных растворах, алюминия — на воздухе, платины и золота — во многих агрессивных средах и т. п. В определенных условиях некоторые металлы практически не способны к процессу анодного растворения, например свинец в растворах сульфатов. [c.519]

    В [52] на основании лабораторных исследований грунтов на крупномасштабных моделях показано изменение горизонтального давления на стенку от ее перемещения. Как видно из рис. 4, даже при незначительном перемещении стенки Л до 0,5 мм коэффициент бокового давления = Оз/я резко уменьшается. При последующем увеличении смещения влияние бокового распора сыпучего тела прекращается и наступает период, когда часть сыпучего материала начинает скользить в направлении к стенке. В этом случае на нее будет действовать активное давление. В каталитических реакторах абсолютные значения температурных расширений стенок на порядок выше. Перемещения стенок также имеют место при работе реакторов в непостоянном температурном режиме (рабочий цикл — регенерация, пуск — остановка и др.). Было замечено, что в реакторах каталитического крекинга после нескольких пусков и остановок, т. е. при незначительных расширениях и сжатиях слоя, частицы катализатора в определенных зонах слоя уплотнялись и в ряде случаев подвергались повышенному истиранию [53] по лпниям активного и пассивного давлений. Авторами [54] при исследованиях высоких слоев сыпучего материала было установлено, что величина сил трения между частицами стремится к максимальному значению у стенки емкости и к минимальному — в ее центре, что приводит к перераспределению по сечению горизонтальных и вертикальных давлений. В связи со строительством крупнотоннажных зернохранилищ, цементохранилищ, коксовых башен исследуется проблема взаимодействия сыпучего материала со стенкой емкости из-за возникновения в последней по высоте и по диаметру неоднородных растягивающих, изгибающих и температурных напряжений [39, 55, 56]. Интересными являются исследования взаимодействия сыпучего материала и податливых стен силосов [c.34]

    Разность абсолютных значений межфазных поверхностей, определенных стереометрическим Яг и химическим вхим способами (см. рис. 1.26), отражает влияние гидродинамики на процесс массопередачи и может служить показателем активности ПКФ. Ее можно представить как некоторую пассивную поверхность, не участвующую в массопереносе Очевидно, что [c.77]

    Фосфорная кислота является окислителем, поэтому такие металлы, как молибден, никель, цирконий, склонны к пассивации. При нормальной температуре скорость коррозии железа возрастает по мере повышения концентрации кислоты лишь до определенного предела. В концентрированной кислоте иа железе образуется пассивная пленка. При введении п состав стали элементов, хорошо пассивирующихся в кислоте (N1, Мо). их коррозионная стоГг-кость повышается. Высокой коррозионной стойкостью [c.850]

    Значения пределов взрываемости в тройной системе горючее — окислитель — инертный компонент целесообразно представлять в виде зависимости л р от содержания инертного компонента / (рис. 8). С увеличением 1 уменьшается диапазон горючих составов между верхним и нижним концентрационными пределами. При определенном содержании инертного компонента /кр обе ветви кривой критических составов ЯтШ (1) и Ятах (I) смыкаются в точке, называемой мысом области взрываемости. Как правило, мысу соответствует приблизительно стехиометрическое соотношение содержаний горючего и окислителя такую смесь труднее сделать негорючей, для этого требуется большее содержание инертного компонента, делающего горючую среду более пассивной, флегматизирующего ее. [c.48]

    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии. [c.71]


Смотреть страницы где упоминается термин Пассивность определение: [c.507]    [c.557]    [c.21]    [c.185]    [c.303]    [c.315]    [c.417]    [c.21]    [c.39]    [c.71]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.49 ]

Коррозия пассивность и защита металлов (1941) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2025 chem21.info Реклама на сайте