Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пор размер при ДСН-электрофорезе

    Как уже отмечалось, электрофорез коллоидных частиц очень похож на ионофорез, и не только по характеру и механизму явления, но и по величине электрофоретической подвижности. Последняя, как и подвижность ионов, имеет порядок несколько микронов в секунду при напряженности электрического поля 1 В/см. Этот факт также говорит в пользу если не независимости, то, во всяком случае, слабой зависимости электрофоретической подвижности от размера частиц. [c.155]


    Несмотря на сходство электрофореза и ионофореза, применяемые для их исследования методы различны. Метод подвижной границы, редко используемый при ионофорезе, оказался исключительно плодотворным для электрофореза. В ряде случаев электрофорез оказывается возможным исследовать непосредственно, прямым микроскопическим или ультрамикроскопическим методом, что невозможно при ионофорезе из-за субмикроскопических размеров ионов, [c.155]

    В методе подвижной границы скорость электрофореза измеряют по скорости, с которой движется в электрическом поле граница между коллоидной дисперсией и ее ультрафильтратом. Применимость этого метода связана с тем фактом, что электропроводность коллоидной системы обычно лишь немного превышает электропроводность чистой дисперсионной среды. Коллоидные частицы, обладающие в электрическом поле почти одинаковой с ионами подвижностью, имеют в силу своих сравнительно больших размеров гораздо меньшую концентрацию. Поэтому они слабо участвуют в переносе электричества через раствор, а электропроводность среды почти не изменяется от их присутствия. Это обстоятельство оказывается очень важным, так как если бы два раствора, образующие границу, по скорости которой определяется подвижность данного компонента в электрическом поле, имели разную электропровод- [c.155]

    В результате дальнейшего исследования электрофореза было обнаружено, что многие экспериментальные факты ие укладываются в рамки теории Смолуховского. Так, оказалось, что в ряде случаев скорость электрофореза зависит от размера частиц и концентрации электролита. [c.74]

    Зная концентрацию электролита, размер и форму частиц, можно рассчитать параметр ха и скорость электрофореза. Значение функции /(ха) в зависимости от величины на для непроводящих сферических частиц в проводящей среде меняется от 1 до, 5 (табл. IV. ). [c.75]

    Причина обоих явлений, обнаруженных Ф. Ф. Рейссом, одна и та же — наличие разноименных зарядов у твердой и жидкой фазы. При электрофорезе в результате возникновения электрического поля между электродами, благодаря малому размеру частиц глины, происходит перенос отрицательно заряженной дисперсной фазы к положительному электроду. При электроосмосе ввиду того, что частицы песка слишком тяжелы, под влиянием электрического поля по капиллярам, имеющимся в слое песка, к отрицательному электроду передвигается положительно заряженная жидкость. [c.170]


    Согласно исходным положениям, электрофорез представляет собой явление, близкое электроосмосу. И для электрофореза, и для электроосмоса, как мы приняли ранее, перемещение жидкости по отношению к поверхности твердой фазы определяется силами, действующими на двойной электрический слой. Именно исходя из этих предпосылок нами и было выведено уравнение Гельмгольца — Смолуховского, выражающее зависимость скорости электрофореза от градиента потенциала внешнего поля. Однако применение уравнения (VII, 42) для описания электрофоретических явлений ограничено следующими условиями. Во-первых, толщина двойного слоя (обычно характеризуемая величиной 1/х) должна быть мала, по сравнению с размером частицы. Во-вторых, вещество частицы не должно проводить электричества, а поверхностная проводимость на межфазной границе должна быть настолько малой, чтобы она практически не влияла на распределение внешнего электрического поля. [c.203]

    Помимо явлений электрофоретического запаздывания и электрической релаксации на скорость электрофореза может влиять и агрегатное состояние дисперсной фазы. Так, скорость электрофоретического переноса жидких частиц при всех прочих одинаковых условиях электрофореза равна подвижности твердых частиц лишь в частном случае, когда в результате адсорбции поверхностноактивных веществ поверхность капли становится неподвижной, что делает жидкую частицу похожей на твердую. В общем же случае жидкие частицы, обладающие достаточно высокой проводимостью, движутся при электрофорезе значительно быстрее, чем твердые. Это объясняется следующими причинами. Во-первых, трение о поверхность жидкой частицы всегда меньше, чем трение о поверхность твердого шарика таких же размеров, так как капли жидкости могут деформироваться при движении среды. Во-вторых, двойной электрический слой [c.206]

    Зонный электрофорез на ацетатцеллюлозной мембране. Мембрана ацетатцеллюлозы как носитель для электрофореза имеет ряд преимуществ по сравнению с бумагой однородность и строго определенный размер пор, пониженная адсорбционная способность, что исклю- [c.363]

    НОМ порошке, порошке поливинилхлорида и т. д., и главным образом на целлюлозе. Электрофоретический метод разделения имеет особое значение для разделения коллоидов и аминокислот, так как заряд частиц этих соединений зависит от значения pH среды. Поэтому значение pH раствора (изо-электрическая точка) оказывает большое влияние на направление движения ионов в растворе. Процесс электрофореза проводят часто в присутствии буферных растворов. Согласно уравнению (7.1.29), состав раствора оказывает большое влияние на скорость движения частиц в растворе. Движению частиц в электрическом поле препятствует явление диффузии. Влияние диффузии обратно пропорционально размерам частиц и силе поля. Для разделения ионов больших размеров можно применять электрофорез при низком напряжении, для разделения частиц небольших размеров следует работать при более высоких напряжениях. Электрофорез на носителе по технике выполнения проще, чем обычный электрофорез. При этом вещества в соответствии со скоростями их движения в электрическом поле фракционно осаждаются на носителе. Используя сорбционное действие носителя, можно замедлить движение частиц, что приведет к расширению зон фракционирования. Под действием выделяемого током тепла, особенно при работе с высокими напряжениями, происходит испарение растворителя, что затрудняет процесс разделения. Важным фактором является удаление перед разделением больших количеств электролитов, например, в процессе диализа. [c.387]

    Определение -потенциала из измерений скорости электрофореза и электроосмоса дает надежные и сопоставимые результаты только тогда, когда размер коллоидных частиц значительно превосходит толщину двойного электрического слоя. В этом слу- [c.91]

    Существенно, что скорость электрофореза мало изменяется с размером частиц, так как его влияние на -потенциал выражено слабо. Поэтому при достаточных значениях ц-потенциала и внещнего поля вполне возможно концентрирование высокодисперсных частиц, что совершенно исключается при использовании седиментации. [c.347]

    Для неэлектропроводных частиц при их размерах, много больших толщины диффузной части двойного слоя, внешнее поле огибает поверхность частиц, так что оно оказывается параллельным поверхности на большей ее части (рис. VH—8). Это реализуется в процессах электрофореза сравнительно крупных частиц и электроосмоса в диафрагмах из неэлектропроводных материалов, когда силовые линии внешнего поля следуют капиллярам диафрагмы (рис. VII—9). Именно к этому простейшему случаю относится приведенное в 1 данной главы описание электрокинетических явлений на основе модели Гельмгольца. [c.188]


    Электрофорез использует различия скорости и направления движения заряженных частиц в электростатическом поле. Направление движения зависит от знака заряда, скорость — от величины заряда и размеров частицы. Изотахофорез представляет собой разновидность электрофореза, развивающуюся в течение последнего десятилетия. [c.247]

    Сравнительно недавно разработан метод электрофореза на полиакриламидном геле. Метод характеризуется высокой разрешающей способностью и применяется для фракционирования и определения размеров, конфигурации и суммарного заряда молекул (белков, нуклеиновых кислот и др.) см. обзор 24]. [c.399]

    Электрокинетические явления широко используются не только при научных исследованиях, но и в технике. В частности, электро- форез применяют для нанесения тонкого слоя частиц коллоидных размеров на поверхность проводящего материала. Этим способом лолучают весьма однородные покрытия, толщину которых легко регулировать. Электроотложение можно проводить в таких средах, как спирт, ацетон и других, что исключает выделение газов на электродах дал<е при большой силе тока и малой электропроводности жидкости. Для нанесения токопроводящих покрытий электрофорез используют при производстве изолированных нагревательных спиралей и активированных катодов для радиоламп, представляющих собой металлическую проволоку, покрытую тонким слоем окисла щелочноземельного металла. [c.218]

    Ларсон и соавторы в аналитических опытах на микроколонке (0,15 X 10 см) исследовали оптимальные условия для фракционирования рестриктов ДНК в системе ХОФ-5 при среднем давлении ( 33 атм) и скорости элюции 13 мл/ч. Наилучшее разделение 17 фрагментов размерами от 43 до 850 пар оснований получалось у них при использовании очень пологого линейного градиента (0,55—0,75 М K I) объемом 40 мл (220 Fj) в нейтральном буфере при температуре 43°. Повышение температуры, по их данным, затрудняет элюцию ДНК и растягивает ее профиль. Удается разделить фрагменты длиной 98 и 102 пары оснований, чего далеко не всегда можно добиться с помощью электрофореза. Длина липких концов рестриктов и их состав влияют на разделение, равно как и нуклеотидный состав ДНК и даже последовательность оснований. Подчеркивается нео - [c.173]

    Для фракционирования по размерам очень высокомолекулярных ДНК с молекулярной массой до ПО млн. Север использовал гели агарозы малой концентрации (вплоть до 0,1%). Такие гели являются полужидкими по своей консистенции и могут быть использованы только в варианте горизонтального электрофореза. На стеклянной пластине сначала заливают рамку из 1,5%-ной агарозы, которую затем заполняют агарозой малой концентрации [Sewer, 1980]. В то время как скорость миграции двунитевой линейной ДНК в свободной жидкости не зависит от ее-молекулярной массы (ввиду постоянства отношения заряда к линейному размеру), электрофорез в гелях агарозы малой концентрации обнаруживает эффект значительного трения ДНК о гель. Даже для ДНК с Л1 = 2 млн. скорость миграции увеличивается в 1,5 раза при переходе от 0,57о-ной агарозы к 0,1%-ной, а для ДНК с М=25 млн. это увеличение оказывается шестикратным, причем в 0,1%-ной агарозе такая ДНК мигрирует еще вдвое медленнее, чем в свободной жидкости. [c.122]

    При анализе разделенных электрофорезом молекул ДНК широкое распространение получил метод переноса нуклеиновых кислот из агарозных гелей на нитроцеллюлозную бумагу, разработанный Е. Саузерном в 1975 г. в отечественной литературе его принято называть блоттингом по Саузерну (от англ. blotting — промокание). Сначала молекулы ДНК (или их фрагменты), разделенные по размерам электрофорезом в пластинах агарозного геля, денатурируют шелочью, после нейтрализации щелочи [c.56]

    Фрэмтон и Гортнер (см. ссылку 81) сообщают о произведенных ими измерениях электрофореза самых разнообразных водных дисперсий углерода. Они отмечают весьма примечательное однообразие подвижности частиц углерода, независимо от большого различия в их размере, чистоте и источнике происхождения. Полученные ими данные составляют содержание табл. 10, из которой видно, что даже активирование углерода не оказывает никакого влияния на подвижность частиц (см. образец 5). [c.83]

    Электрические свойства растворов полиэлектролитов. Электрокинетический потенциал, как известно, с большей или меньшей точностью может быть подсчитан по уравнениям Гельмгольца — Смолуховского или Генри только для коллоидных частиц, размер которых значительно превосходит толщину двойного электрического слоя. Для частиц же, диаметр которых мал по сравнению с толщиной двойного электрического слоя, при расчете электрокинетического потенциала следует вводить ряд поправок и в первую очередь поправку на электрическую релаксацию. Кроме того, если макромолекулы находятся в растворе в виде рыхлого клубка, то должно быть принято во внимание движение среды через петли свернутой цепи. К сожалению, до сих пор теория электрофореза для свернутых в клубок макромолекул отсутствует. Поэтому в настоящее время распространено определение электрофоретической подвижности не отдельных макромолекул, а макромолекул, адсорбированных на достаточно крупных частицах кварца или угля или на капельках масла. В этом случае электрокинетический потенциал легко определить с помощью микроэлектрофоретических методов. Как показали многочисленные исследования, при достаточной толщине слоя полимера, покрывающего частицу, подобный прием дает вполне воспроизводимые результаты. [c.477]

    Вопрос о пределах применимости этих формул в различных условиях был рассмотрен Муни, Кэмпом и Генри. Генри было показано, что классическая формула с использованием коэффициента 4я может быть применена для случая, когда радиус частицы не менее, чем в 300 раз превышает толщину двойного слоя при меньших соотношениях следует использовать уравнение с коэффициентом 6я. Экспериментальный материал по наблюдениям за изменением электрофоретической скорости в зависимости от размеров частиц показывает закономерность, сходную с той, что наблюдалась для потенциала течения и электроосмоса при уменьшении радиуса пор капил 1 рных систем. В окончательную формулу для электрофореза (85) радиус частицы не входит. Также как в формулах для злектроосмоса и потенциала течения не фигурирует радиус капилляров. Действительно, результаты ранних работ показывали, что величина электрофоретической скорости в первом приближении оказывалась независимой от размеров частиц в широком интервале. Это можно йллюстриро вать рядом примеров (табл. 14). [c.129]

    Из закономерностей электрофореза вытекает важный практический вывод, что скорость движения взвешенных в жидкости частиц не зависит от их размера и в изученных случаях находится в пределах от 10 до 40- 10- см1сек. Эта величина близка к подвижности простых неорганических ионов (кроме ионов Н+ и ОН ). Скорость не зависит также от. заряда частиц. Хевеши [c.229]

    В камеру (прибор для горизонтального электрофореза типа 0Е-2а) помещают 10 бумажных полос размером 4X44 см, концы которых погружают в сосуды с раствором электролита. На бумажных полосках на расстоянии [c.127]

    Наряду с разделением белков по величине электрофоретической подвижности ири использовании указанных носителей имеет значение молекулярно-ситовой эффект геля и размеры молекул Оелка ири прохождении их через ячеистую структуру геля. Так, если при электрофорезе иа бумаге белки сыворотки разделяются на 4—5 четких зон, то в полиакриламидном геле выявляется 13—16 полос, соответствующих отдельным белкам (рис. 98). [c.219]

    При электрофорезе электропроводящих частиц электрический ток может проходить и через частицы, что приводит к существенному искажению формы силовых линий вблизи частиц (рис. V1I-13). Однако, как правило, это сопровождается поляризационными эффектами в двoйiLi lx слоях у поверхности частиц (возникновение перенапряжений). В результате такие частицы, особенно если они имеют достаточно малые размеры, могут вести себя как неэлектропроводящие. [c.238]

    Из данных о скорости передвижения коллоидных частиц при электрофорезе можно оценить величину их заряда. Получаемые по этому и по друг методам значения в общем хорошо согласуются. Это указывает прежде всего на то, что заряд большинства коллоидных частиц значительно больше, чем у отдельных ионов. С увеличением размеров частиц возрастает обычно и их заряд если при диаметре частицы в 1 нм заряд составляет 2—3 единицы элементарного количества электричества (равного заряду электрона), то для частиц с диаметром 100 нм заряд увеличивается до сотеи и тысяч таких единиц. При всей громадности этой величины по сравнению с числом образующих коллоидную частицу атомов или молекул она все же очень мала. Поэтому при электрофорезе переносится гораздо больше вещества, чем то отвечало бы закону электролиза. [c.334]

    Идентификация модифицированных нуклеотидных остатков в полинуклеотидной цепи РНК долгое время была задачей особой трудности. С появлением современных методов секвенирования нуклеиновых кислот она существенно упростилась. Модификацию РНК или ее расщепление ферментами ведут таким образом, чтобы (как и при секвенировании) было затронуто в среднем только одно звено на молекулу (в чем есть дополнительный смысл, так как множественная модификация РНК искажает ее структуру). Далее, если изучается РНК небольшого размера или сегмент РНК, примыкающий к одному из ее концов, то этот конец метят радиоактивной меткой и задача идентификации модифицированного основания (после расщепления соответствующего звена) или атакованной нуклеазой межнуклеотидной связи сводится, как и при секвенировании, к определению длины фрагмента по его подвижности в высокоразрешающем электрофорезе в геле. В том случае, когда анализируемый район удален от концов молекулы на расстояние больше 150—200 н. о., используют реакцию обратной транскрипции (см. гл. 13). Для этого синтезируют олигонуклеотид, комплементарный участку РНК, расположенному вблизи от анализируемого района с З -концевой стороны молекулы, и далее используют его как праймер для обратной траискриптазы. Так как этот фермент останавливается на модифицйрованных остатках матрицы (или в том месте, где расщеплена фосфодиэфирная связь), то вновь по длине образующегося фрагмента можно определить положение модифицированного звена в РНК. [c.40]

    Рассмотрим теперь совсем недавний пример разделения ДНК и РНК. Здесь решалась более тонкая задача разделения НК, соизмеримых по своим размерам, а именно очистки ДНК плазмиды pBR 322 от примеси РНК. Присутствие РНК в препаратах плазмидной ДНК мешает протеканию некоторых ферментативных реакций и затемняет результаты введения концевой радиоактивной метки. Оказалось, что даже интенсивная обработка РНКазой (50 мкг/мл, 37°, 1 ч) не расщепляет РНК полностью, а лишь дробит ее на фрагменты, не обнаруживаемые электрофорезом в 1%-ном геле агарозы (они уходят вперед), но переосаждающиеся этанолом вместе с плаз-мидной ДНК. Кроме того, обработка РНКазой вообще нежелательна. Несмотря на предварительный прогрев, в ней остается небольшая [c.143]

    Рассмотренный только что для обычной сефарозы, этот вариант элюции, естественно, находит применение и при использовании гидрофобизированной агарозы. В качестве примера процитируем недавно опубликованную работу по мягкой очистке HMG-белка из ядер печени на колонке со-аминобутилагарозы. Этот белок растворим в растворе сульфата аммония вплоть до концентрации, достигающей 70% от насыщения. Сначала такой концентрацией СА в нейтральном 0,01 М трис-буфере высаливали из экстракта ядер большое количество балластного белка. Затем надосадочную жидкость, содержащую около 40 мг белка, вносили на колонку размером 2 X X 30 см, уравновешенную тем же раствором СА. Элюцию вели снижающимся линейным градиентом концентрации СА в том же буфере (500 мл) со скоростью 20 мл/ч, т. е. примерно 7 мл/см -ч. Низкая скорость элюции характерна для всех опытов такого рода ввиду повышенной вязкости концентрированных солевых растворов и соответствующего снижения скорости диффузии макромолекул. Около 30% белка не садилось на колонку и удалялось при первоначальной промывке. В ходе элюции выходило четыре пика, в первом из которых методом электрофореза идентифицировали HMG-белок [ onner. omings, 1981]. [c.181]


Смотреть страницы где упоминается термин Пор размер при ДСН-электрофорезе: [c.36]    [c.220]    [c.147]    [c.156]    [c.159]    [c.127]    [c.383]    [c.331]    [c.616]    [c.243]    [c.54]    [c.140]    [c.174]    [c.496]   
Биофизическая химия Т.2 (1984) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофорез



© 2025 chem21.info Реклама на сайте