Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурный фактор молекулярного кристалла

    Поэтому Г. Б. Бокий и С. С. Бацанов [39] предложили называть наименьшее количество вещества, сохраняющее его состав и свойства, формульной единицей , поскольку это понятие в случае твердых неорганических соединений не может быть тождественно понятию молекулы. Для объяснения свойств в макро-молекулярном состоянии введены понятия повторяющихся звеньев (в полимерах), структурных единиц, правильных систем точек (с учетом геометрического фактора в кристаллах) [40]. [c.211]


    Механические свойства пластмасс зависят от целого ряда взаимодействующих друг с другом структурных факторов, таких как молекулярная масса, разветвлен-ность полимерных цепей, гибкость макромолекул, межмолекулярные силы, строение кристаллов, кристалличность и степень упорядоченности цепей. [c.53]

    Выражения (13.37) — (13.39) были получены для решетки, у которой в вершине каждой ячейки находится лишь один атом однако нетрудно показать, что аналогичные выражения справедливы для любого реального кристалла. Повторяющимся элементом является элементарная ячейка. Кристалл — решетка из элементарных ячеек, каждая из которых определена векторами а, Ь и С (рис. 13.12,А). Независимо от того, что находится внутри каждой ячейки — атом, одна или несколько молекул, — распределение электронной плотности в кристалле периодически повторяется в результате трансляций вдоль векторов а, Ь и С. Поэтому условия Лауэ остаются в силе и вырезают из структурного фактора только его значения в точках обратной решетки. Но структурный фактор теперь — это не атомный рассеивающий фактор. Это молекулярный структурный фактор, или структурный фактор элементарной ячейки, определяемый выражением (13.27). Чтобы показать это, полезно воспользоваться математической операцией свертки. [c.338]

    Определяющее влияние на формирование структуры твердого вещества оказывает природа связи. Вместе с тем здесь действуют и- другие факторы природа структурных единиц — их состав, строение, формы, размеры — и такой важный фактор, как энергетическое состояние вещества. Ионные, атомные, молекулярные и макромолекулярные структурные единицы образуют соответствующие кристаллы или же тела непериодического строения. Большему или меньшему значению свободной энергии отвечают модификации вещества различной плотности, в том числе огромное число метастабильных модификаций. [c.155]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]


    Кристаллическое состояние характерно для различных классов полимерных материалов, используемых в современной технологии. В этом отношении полимеры, казалось бы, подобны большинству известных низкомолекулярных кристаллизующихся тел типа металлов и неорганических солей. Однако важнейшая особенность химического строения полимеров — существование длинноцепных макромолекул — оказывает во многих отношениях доминирующее влияние на свойства этих веществ. Решающими оказались два фактора — способность полимерных кристаллов к формированию разнообразных высших структурных форм, часто называемых надмолекулярными структурами, и близость по порядку величины размеров основных кристаллических структур и продольных размеров макромолекул, вследствие чего возникает неоднозначность понятий ближний и дальний порядок. Последнее обстоятельство всегда требует установления того, по отношению к каким структурным элементам идет речь об упорядоченности. Следует иметь в виду, что одна и та же молекулярная цепь, часто сохраняющая сегментальную подвижность, может входить в различные элементы структуры, что обеспечивает их относительную подвижность и изменение поведения в результате внешнего воздействия. [c.162]

    Против этого объяснения изменения ПП кристаллов, казалось бы, можно выдвинуть возражение, что наблюдаемые изменения обусловлены многими факторами — изменением молекулярного веса и плотности вещества или изменением межатомных расстояний, а следовательно, и прочности химической связи. На самом деле, такое возражение оказывается несостоятельным, так как можно подобрать кристаллы (одинакового структурного типа), в которых молекулярные веса, плотности, межатомные расстояния будут одинаковыми или близкими, а показатели преломления будут все равно заметно отличаться из-за различия в ионности связи. В табл. 119, заимствованной из работы Поваренных [293], приведены характеристики некоторых щелочных галогенидов и щелочноземельных халькогенидов и значения ковалентности связи (100%—О из табл. III приложения. [c.267]

    На основании наших последних исследований цветности молекулярных комплексов, соединений с отделенными неконъюгированными хромо форными системами, сравнительного влияния структурных факторов на поглощение света в кристаллах и растворе, мы пришли к расширению представлений о мезостроении—к гипотезе о мезоэффекте в молекулярном комплексе посредством тг-связей особого вида, без наличия одновременной а-связи ( Комплексная мезомерия , 1939 и, подробнее, в 1947 г.). [c.164]

    В случае белка гипотезы об определенном расположении атомов в молекуле недостаточно для расчета интенсивностей. Молекула может занимать различные положения и ориентацию в элементарной ячейке, что скажется на симметрии кристалла и размерах элементарной ячейки. При построении моделей можно расположить молекулу самыми различными способами, поэтому необходимо произвести расчет интенсивностей для каждой из полученных конфигураций. В случае белка учесть влияние тысяч атомов, содержащихся в каждой молекуле белка, и тем более сделать это для многих возможных расположений молекул в элементарной ячейке практически невозможно, так как количество моделей можно варьировать до бесконечности. Здесь возможен, повидимому, один удачный выход. Эвальд [14] и Нотт [15] предложили применить молекулярный структурный фактор для расшифровки кристаллических структур. Идея молекулярного структурного фактора представляет собой расширение концепции фактора атомной формы. Кривую рассеяния часто встречающейся группы атомов, например бензольного кольца или алифатической цепи, вычисляют, как функцию от sin /,. Такие группы не имеют сферической симметрии, как и их [c.331]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]


    Мы видим, что аморфные вещества не являются разупорядо-ченными кристаллическими веществами. И, таким образом, кристаллическая модель не может отражать природу аморфных веществ, так же как кристаллическая решетка не может содержать никакой информации о структуре аморфных веществ. Кристаллическая модель твердого вещества не отражает существования направленной составляющей связи, соединяющей структурные единицы твердого вещества. Между тем давно известно, что природа кристаллов определяется в конечном счете именно этим фактором. В самом деле, тип кристаллической структуры определяется характером межатомной связи и кристаллические структуры издавна классифицируются по типу связи ковалентной, водородной или ионной, металлической, молекулярной — ван-дер-ваальсовской. При этом различают координационные, каркасные, слоистые, цепочные и островные структуры. [c.162]

    Согласно современным взглядам [20], именно специфические меж-молекулярные контакты являются главным фактором структурообра-зования в органическом кристалле. Однако для однозначного толкования исследуемой кристаллической структуры важное значение имеет правильность выбора системы понятий и подходов. В этом смысле наиболее корректной и информативной выглядит процедура кристаллохимического анализа мочевины, предложенная Муйдиновым и Зорким [18]. Суть этой процедуры заключается в использовании для описания структурных Н-ассоциатов в кристалле аппарата графов. [c.115]

    Из факторов, относяш,ихся к самим полимерам, на растрескивание влияют следуюш,ие Наличие полимергомологов, что приводит к разной локальной степени набухания или растворения в полимере, а это, в свою очередь, обусловливает концентрацию напряжений и образование треш ин. В кристаллических полимерах действие растворителя локализуется прежде всего по границам сфероли-тов, а иногда и внутри сферолитов между лучами. Это связано с тем, что при кристаллизации в сферолитах упорядочиваются структурные единицы одинакового строения, например в линейных полимерах — линейные молекулы. В этом случае молекулы, содержаш,ие разветвления и посторонние группы, возникающие в результате окисления и других процессов, автоматически выталкиваются из кристаллов и образуют аморфную или менее упорядоченную фазу между сферолитами. Таким образом происходит концентрирование дефектного материала, по которому начинается процесс разрушения. Неодинаковая скорость воздействия на кристаллические полимеры физически или химически агрессивных сред наглядно проявляется при травлении полимеров аналогично металлам. Опыты по травлению показывают, например, что при действии на полиэтилен концентрированной HNO3 с большей скоростью и в первую очередь растворяется дефектный менее кристалличный материал. В связи с этим сопротивляемость растрескиванию увеличивается при сужении кривой распределения за счет низкомолекулярной части и при увеличении молекулярного веса полимера. Аналогичные данные имеются и для поликарбоната Склонность к растрескиванию уменьшается с уменьшением внешних и внутренних напряжений, а также с увеличением степени кристалличности, т. е. с ростом плотности. Последнее наблюдалось на полиамидах в кислотах а также на полиэтилене в растворе ПАВ Однако одновременное увеличение набухания с ростом степени кристалличности, например в системе фторопласт — керосин приводит к уменьшению долговечности. Сопротивляемость растрескиванию снижается с ростом [c.77]

    Наряду с молекулярными структурами к одному из решающих факторов, oпpeдev яющиx свойства полимеров и волокон, относятся надмолекулярные структурные образования. На основании современных представлений, в реальных кристаллических и аморфных полимерах содержатся надмолекулярные образования. Полимеры, как правило, представляют собой структурно неоднородные системы, состоящие из областей с упорядоченным к беспорядочным расположением макромолекул. Надмолекулярные структурные образования обычно подразделяются на первичные и вторичные элементы структуры. Первичные структурные элементы образуются в результате строго закономерного расположения макромолекул относительно друг друга. Для кристаллических полимеров к подобным элементам структуры относятся кристаллы, а для аморфных полимеров — макрофибриллы или пачки самых разнообразных форм и размеров. Размеры первичных структурных элементов составляют около ЮОА. Эти структурные образования по размеру меньше макромолекул , длина которых для обычных волокнообразующих полимеров составляет до ЮОООА. Вторичные структурные элементы образуются из первичных структур. К ним относятся сферолиты и макрофибриллы. В кристаллических полимерах имеются кристаллические и аморфные области. В аморфных полимерах надмолекулярные образования не содержат кристаллических образований, но тем не менее по степени упорядоченности макромолекул они являются структурно неоднородными. [c.197]


Смотреть страницы где упоминается термин Структурный фактор молекулярного кристалла: [c.258]    [c.138]    [c.46]    [c.138]   
Биофизическая химия Т.2 (1984) -- [ c.343 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалл молекулярные



© 2025 chem21.info Реклама на сайте