Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы никель

    Характеристика процесса осаждения. Для осаждения меди можно применять аноды из различных металлов никеля, свинца, алюминия и т. д. Как и при обычном электролитическом осаждении меди, присутствие азотистой кислоты недопустимо осаждение также сильно замедляется в присутствии ионов трехвалентного железа. В связи с тем, что содержание железа в металлическом никеле почти всегда незначительно, перед электролизом к азотнокислому раствору прибавляют немного сернокислого гидразина. При этом трехвалентное железо восстанавливается и, кроме того, полностью удаляются из раствора окислы азота и азотистая кислота. [c.210]


    Например, при изготовлении смешанных катализаторов на основе окислов металлов VHI группы раствор нитратов таких металлов смешивают с карбонатом натрия при температуре 75° С, что приводит к образованию осадка, который промывают. Только после этого полученный материал направляют на смешение. В другом случае осадок получают при добавлении карбоната калия к раствору нитратов металлов (никеля и др.), содержащего гидроокись алюминия. Полученную массу отфильтровывают, промывают, сушат и прокаливают. И только после этого полученный материал направляют на смешение и последующую переработку. Иногда часть полученною катализатора после высокотемпературной прокалки измельчают и возвращают в цикл, направляя на стадию смешения с исходными материалами. [c.21]

    В конструкциях сеток и сит, применяемых в качестве фильтрующих перегородок, вносится много изменений. Если раньше основными конструкционными материалами были гуммированная углеродистая и нержавеющая сталь, то сейчас выпускаются сетки из монель-металла, никеля, различных марок нихрома. [c.87]

    На поверхности катализатора бензол может адсорбироваться либо всей плоскостью, либо одним из ребер. По А. А. Баландину это будут соответственно секстетная и дублетная модели. В случае плоскостной хемосорбции (секстетная модель) размеры молекулы бензола и расстояния между атомами металла должны соответствовать друг другу. Мультиплетная теория А. А. Баландина по параметрам решеток металлов постулирует, что катализаторами гидрирования и дегидрирования могут быть только металлы никель, кобальт, медь, рутений, иридий, палладий, платина, родий, осмий,. рений. Это подтверждено экспериментально, за исключением меди, на которой гидрирование бензола часто не наблюдалось. Однако считают что это исключение кажущееся и незначительная активность меди объясняется энергетическими факторами. [c.131]

    В настоящее время существуют две группы процессов получения высших а-олефинов из этилена на алюмоорганических катализаторах. В первой группе процессов, более традиционных, используется реакция олигомеризации этилена под влиянием триэтилалюминия. Во второй группе процессов, разработанных в последние годы, используются комплексные катализаторы на основе переходных металлов никеля, кобальта, титана, ванадия, хрома, вольфрама, циркония. [c.322]

    Средний молекулярный вес их равен 24—28. С увеличением концепт рация в газах водорода, что может иметь место, например, при накоплении на катализаторе металлов (никель, ванадий и др.), плотность газов снижается. Потоки газов, отводимых из газосе-параторов крекинг-установок, а также из абсорберов, содержат большее или меньшее количество инертных газов, в некоторых случаях до 10% по объему, считая на сухой газ. Инертные газы вносятся в реактор катализатором и затем поступают вместе с продуктами реакции в секцию фракционирования. [c.233]


    Процесс осуществляют циклически с предварительным подогревом сырья до температуры реакции без термического разложения углеводородов. Последнее достигают тем, что на поверхность огнеупорных материалов в зоне предварительного подогрева в виде пленки толщиной 0,794 мм наносят металл (никель или кобальт), которому приписывают способность тормозить термическое расщепление углеводородов. Подогретое сырье поступает в зону реакции, заполненную никелевым катализатором. Продолжительность рабочего цикла 2 мин [c.182]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    В результате же гидроочистки плотность, вязкость и зольность газойля уменьшаются коксуемость по Конрадсону снижается значительно, но температура плавления изменяется мало большая часть металлов (никель, ванадий) удаляется. Групповой углеводородный состав изменяется в сторону увеличения содержания моно- и полинафтеновых и особенно моноароматических углеводородов на 10— 18 % (масс.) [13]. [c.53]

    В целях экономии легированных сталей и цветных металлов для применения оборудования, материалов, кабельных изделий, содержащих нержавеющие, конструкционные и инструментальные стали и остродефицитные цветные металлы (никель, вольфрам, молибден, кобальт, меДь, олово, свинец, цинк) необходимо получить разрешение Межведомственной комиссии при Госснабе СССР (МВК). Материалы для получения разрешения МВК выполняются на стадии рабочей документации и представляются в виде сборников по производствам, пусковым комплексам и очередям строительства. Сборники оформляются отдельно на оборудование и трубопроводы и отдельно на кабельные изделия. В состав сборника [c.99]

    Наряду с участием непосредственно в реакциях крекинга матрица способствует повышению стойкости катализаторов к отравляющему действию тяжелых металлов (никеля и ванадия), выполняя роль их ловушек. [c.112]

    Увлажнение смешиваемых компонентов в некоторых случаях не производят. Так поступают при получении катализатора на основе доломита, закиси никеля, гидроокиси алюминия и каолинита. С указанной целью смесь этих компонентов обрабатывают слабыми растворами азотной или фтористоводородной кислоты при повышенной температуре. Полученная тестообразная масса смешивается с нитратами металлов (никель, лантан, кобальт). [c.22]

    Сорбенты успешно использованы для селективного извлечения и последующего определения спектрофотометрическими методами редкоземельных элементов в бинарных смесях (по октадам и по тетрадам), а также в растворах, содержащих избыток сопутствующих металлов (никель, цинк, свинец, железо, кадмий, кобальт, уран, медь). [c.27]

    Опасность для здоровья при обращении с катализатором гидрообработки можно связать в основном с тремя наиболее часто содержащимися в них переходными металлами никелем, кобальтом и молибденом. В США установлены приводимые ниже пределы максимально допустимых загрязнений воздуха производственных помещений при среднем пребывании работающе- [c.122]

    Наиболее сложной и дорогостоящей задачей глубокой переработки нефти является технология превращения тяжелых нефтяных остатков в моторные топлива. Выход гудронов — тяжелой,, высокомолекулярной части нефти, выкипающей выше 500— 540°С, составляет 20—30% (масс.). Гудроны типичных сернистых нефтей характеризуются плотностью около 1000 кг/м , содержанием серы 2,7—3,0% (масс.), азота 0,4—0,5% (масс.), высоким содержанием тяжелых металлов (никеля и ванадия)—от 150 г/т и выше, соотношением углерод водород, равным a8. По своим свойствам близки к гудронам некоторые альтернативные виды сырья — тяжелые и битуминозные нефти, синтетические сланцевая и угольная нефти, для которых, как правило, характерны еще более высокое содержание гетероатомных соединений, тяжелых металлов и более низкое отношение Н С. Исходя из качества рассматриваемых видов сырья, принципиально близкой должна быть и технология их переработки. Ведущая роль в решении этой проблемы отводится гидрогенизационным каталитическим процессам, позволяющим за счет деметаллизации, удаления гетероатомных соединений и насыщения водородом облагораживать исходное сырье и получать при этом товарные моторные топлива или высококачественное сырье для дальнейшей переработки. Развитие технологии переработки нефтяных остатков на основе освоенных в промышленности процессов, таких как гидрообессеривание и гидрокрекинг, коксование в псевдоожиженном слое с газификацией получаемого кокса, в настоящее время создает реальные предпосылки для организации безостаточной переработки нефти. [c.60]


    Деасфальтизация с применением селективных углеводородных растворителей [103 обеспечивает практически полное удаление асфальтенов и большей части содержащихся в остатке металлов (никель,ванадий, железо. натрий) без какой-либо деструкции сырья. Получаемые после деметаллизации и деасфальтизации сернистых и высокосернистых остатков продукты требуют обязательного гидрообессеривания. В отличие от прямого гидрообессеривания остатков предварительная де-асфальтизация селективными растворителями позволяет осуществлять последующее гидрообессеривание деасфальтизатов в смеси с вакуумными газойлями при значительно более низком давлении водорода, чем гидрообессеривание мазута II,I2D.  [c.62]

    Обычно для осуш ествления гидрогенизационного обессеривания в качестве катализаторов применяются сульфиды и окислы металлов (никеля, вольфрама, железа, кобальта, молибдена, ванадия, хрома и др.), отложенные на различных носителях или без носителей 1164]. [c.394]

    Углеродистые материалы, как всякие твердые тела, при нагревании расширяются, но в отличие от большей их части могут претерпевать и усадку, особенно интенсивную па начальной стадии прокалки. Известно, что коэфф]щиент линейного термического расширения у металлов (никель, вольфрам, палладий, серебро, хром) сохраняет постоянное значение до высоких температур, в то время, как у углеродистых веществ прн высоких температурах он существенно изменяется. [c.188]

    Сырьем для производства смазочных масел служат нефтяные фракции, выкипающие выше 350 °С. В этих фракциях концентрируются высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углевюдородов различных грушп и их гетеропроизводных, в молекулах которых содержатся атомы кислорода, серы, азота и некоторых металлов (никеля, ванадия и др.). Компоненты масляных фракций обладают различными свойствами, и содержание их в готовых маслах может быть полезным и необходимым или вредным и нежелательным. Поэтому наиболее распространенным путем переработки масляных фракций для получения масел является удаление из них нежелательных компонентов при максимально возможном сохранении желательных , способных обеспечить готовым продуктам необходимые физико-химические и эксплуатационные свойства. [c.7]

    Применение. Железо и его сплавы составляют основу современной техники. Никель является одной из важных Легирующих добавок к сталям. Широко применяются жаростойкие сплавы на основе никеля (нихром, содержащий N1 и Сг, и другие). Из медно-иикелевых сплавов (мельхиор и другие) изготовляют монеты, украшения, предметы домашнего обихода. Большое практическое значение имеют многие другие никель- и кобальтсодержащие сплавы. В частности, кобальт используется как вязкая составная часть металлорежущего инструмента, в которую вкраплены ис-1слючительно.твердые карбиды МоС и W . Гальванические покрытия металлов никелем предохраняют их от коррозии и придают им красивый внешний вид. [c.569]

    Элементный состав битумов следующий (%) 80—85 углерода 8—11,5 водорода 0,2—4 кислорода 0,5—7 серы 0,2—0,5 азота а также металлы (никель, ванадий, железо, натрий). Они представляют собой сложную коллоидную систему, состоящую из асфальтенов, высокомолекулярных смол и масел асфальтены придают твердость и высокую температуру размягчения смолы повышают цементирующие свойства и эластичность масла являются разжижающей средой, в которой растворяются смолы и набухают асфальтены. [c.397]

    Прямая каталитическая переработка нефтяных остатков в светлые нефтепродукты встречает значительные трудности из-за высокого содержания в остатках серы, азота, тяжелых металлов (никеля и ванадия) и асфальто-смолистых веществ, быстро дезактивирующих катализатор. Технологически более простым решением является термическая переработка остатков 163-66]. [c.54]

    В 1751 г. Аксель Фредрик Кронстедт (1722—1765) открыл новый металл никель, очень похожий на кобальт Иоганн Готлиб Ган (1745—1818) выделил в 1774 г. марганец, а Петер Якоб Гьельм <1746—1813) получил в 1782 г. молибден. [c.43]

    Сильно дегидрирующие металлы (никель, медь, кобальт) даже при ничтожном их содержании в катализаторе приводят к резкому увеличению коксоотложения вследствие повышенного образования непредельных углеводородов. Слабодегидрирующие металлы (ванадий, хром, молибден, железо) при небольшом их содержании в катализаторе (до 0,01 вес. %) образуют меньше кокса, чем исходный катализатор. При большем содержании металла в катализаторе коксообразование увеличивается. При содержании тяжелых металлов в катализаторе более 0,03—0,05 вес. % характер их влияния на изменение времени, необходимого для отложения 2% кокса, одинаков. По уменьшению количества образующегося кокса исследованные металлы располагаются в следующем порядке никель, медь>кобальт> молибден, ванадий > железо, хром>сви-нец>бериллий, магний, кальций, стронций>литий>натрий>ка-лий>цезий. Тормозящее влияние щелочных металлов возрастает в соответствии с увеличением их основности [257]. [c.176]

    Большое значение имеет также удаление из сырья тяжелых металлов (никель, ванадий, железо), содержащихся в виде металлорганических соединений. Указанные металлы отлагаются на катализаторе и снижают его активность. Разработан ряд технологий, позволяющих существенно (на 80-90%) снизить концентрацию тяжелых металлов в сырье гидрокрекинга. Наиболее эффективным методом является предварительное гидрогенизационное облагораживание. [c.258]

    Электрохимическое полирование применяется главным образом для отделки поверхности несложных по форме изделий из алюминия, серебра, нержавеющей стали, а также изделий после покрытия их другими металлами (никелем, медью). [c.459]

    Катализаторы и их приготовление. Наиболее широко применяемыми в лаборатории катализаторами являются никель Ренея, никель на кизельгуре, платина, палладий, хромит меди и некоторые сульфиды металлов (никеля, молибдена, кобальта и вольфрама). [c.265]

    С утяжелением мазута выход бензина понижается, а выход окса существенно возрастает. Установки гудрезид проектируются так, чтобы не допустить снижения избирательности катализатора, которое может быть вызвано накоплением на нем тяжелых металлов (никель, ванадий), содержащихся в тяжелых остаточных видах сырья. Кроме того, предусматривается возможность переработки на гаких установках не только мазутов, но и соляровых дистиллятов. [c.246]

    Содержание металлов (никеля и ванадия) в деас-фальтизате значительно меньше, чем в сырье глубокого же обессеривания не наблюдается. [c.64]

    Существует мнение [45, 213], что в концентрациях менее 0,3 вес. % никель более вреден, чем другие металлы, но при более высоких концентрациях его действие соизмеримо с отравляющим эффектом ванадия, железа и меди. На рис. 67 приведены данные [45] о влиянии на активность и закоксовывание катализатора различных металлов. Авторы [45] считают, что отравляющее действие металлов, по-видимому, снижается в таком порядке никель> >железо>ванадий>медь>свинец. Другие исследователи предлагают следующий порядок никель>медь>железо>ванадий они даже приводят количественные соотношеия силы воздействия этих металлов никель 1,0 медь 1,0 железо 0,55 ванадий 0,091 [214]. При увеличении коксового фактора количественные соотношения несколько возрастают железо 0,66 ванадий 0,61 при увеличении выхода газа железо 0,66 ванадия 0,106. [c.155]

    Катализатор получают соосаждением солей никеля и алюминия из них водных растворов с добавлением окиси, гидроокиси или карбоната щелочных или щелочноземельных металлов. Никель (28—75 мас.%) в катализа-ре восстановлен до металлического состояния. Количество щелочных или щелочноземельных металлов, добавляемых в катализатор, зависит от процентного содержания А1аОз в катализаторе и составляет 0,75— [c.145]

    Некоторые из этих нефтей содержат относительно много ванадия, особенно калифорнийская нефть Санта Мария. Еще больше ванадия —1000 частей на миллион — содержит венесуэльская нефть Хэви Мара. Обычно содержание ванадия выше, чем содержание никеля, но бывает и наоборот. Например, в нефтях глубоких месторождений Западного Техаса, содержащих в общем мало металла, никеля больше, чем ванадия. Это справедливо и для некоторых тринидадских нефтяных битумов. [c.46]

    Возрастающее производство сернистого и высокосернистого видов кокса открывает перспективы для использования его в качестве восстановителя и сульфиди-рующей добавки при шахтной плавке окисленных руд некоторых цветных металлов (никель, медь, кобальт и др.), в производстве сероуглерода, сульфида натрия и др. Преимущества сернистого нефтяного кокса по сравнению с каменноугольным - низкая зольность (0,2-0,8%) и меньшая стоимость. [c.14]

    Расчетное значение энергетического барьера гидрирования карбонильной связи над рутением (31 кДж/моль) указывает на ее легкую гидрируемость по сравнению с катализом другими металлами—никель, палладий, платина [38]. Палладий и платина имеют более высокие энергетические барьеры (92 и 130 кДж/моль) следовательно, гидрирование над этими катализаторами будет протекать труднее, т. е. при более высокой температуре. Поэтому для гидрирования монноз палладий и платина не представляют интереса, так как моносахариды очень неустойчивы при повышенной температуре. [c.43]

    Внедрение в 1960-х годах в промышленность каталитического 1<рекинга высокоактивных цеолитсодержаш,их катализаторов значительно улучшило избирательность и экономические показатели процесса. Использование цеолитсодержащих катализаторов позволило повысить мощность установок каталитического крекинга, вовлечь в переработку трудно крекируемое сырье, повысить выход высокооктанового компонента бензина при одновременном снижении коксообразования и выхода легких газов. Цеолитсодержащие катализаторы обладают значительно большей активностью и селективностью, чем аморфные алюмосиликаты, они меньше подвержены отрицательному воздействию тяжелых металлов (никеля, ванадия). Высокая активность катализатора сокращает время реагирования до 1—8 с. [c.168]

    Медь является электроположительным металлом ( си /си + = 0,337 В), поэтому медные покрытия не обеспечивают электрохимической защиты стали от коррозии. Вследствие большой )азности потенциалов между медью и железом оголенные участки последнего (в порах и непокрытых местах) быстро корродируют. Кроме того, медь нельзя применять как самостоятельное покрытие, так как она покрывается на воздухе слоем основных углекислых солей. Чаще всего медные покрытия используют в качестве подслоя достаточно большой толщины (9—36 мкм) перед покрытиями другими металлами, благодаря чему достигается уменьшение пористости и увеличение коррозионной стойкости, а также экономия дефицитных и дорогих металлов (никель, серебро и др.). [c.31]


Смотреть страницы где упоминается термин Металлы никель: [c.7]    [c.66]    [c.110]    [c.43]    [c.78]    [c.10]    [c.84]    [c.86]    [c.57]    [c.155]    [c.139]    [c.19]    [c.125]   
Лабораторная техника органической химии (1966) -- [ c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смесей фторидов металлов, содержащих фториды железа, хрома, никеля, молибдена, титана, вольфрама и алюминия

Арильные соединения переходных металлов никеля

Баймаков, И. В. Томских. Кристаллизация переходного металла на катоде при электролизе его хлоридов (на примере никеля)

Влияние никель-фосфорных покрытий на прочностные характеристики металлов

Высокочастотное титрование. Комплексонометрическое определение солей металлов (кальция, железа, никеля)

ГРУППА СУЛЬФИДА АММОНИЯ Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий, алюминий, бериллий, хром, торий, скандий, редкоземельные металлы, цирконий, титан, ниобий и тантал Элементы, образующие при действии (NH4)aS растворимые в кислотах сульфиды Железо, никель, кобальт, цинк, марганец, ванадий, уран, таллий, индий, галлий Железо

Железо, кобальт, никель и платиновые металлы

Карбонилы металлов никеля

Карбонилы металлов подгруппы никеля

Каталитические реакции типа II, сопровождающиеся отложением твердого продукта реакции на поверхности. Реакция окиси углерода на никеле и других металлах

Комплексы двухвалентных металлов подгруппы никеля

Комплексы нульвалентных металлов подгруппы никеля

Металлокерамические фильтры из никеля и монель-металла

Напряжения механические, влияние магния металлов и сплавов нержавеющей стали никеля

Никель . 19.7. Платиновые металлы

Никель в черных металлах

Никель и его сплавы с медью, марганцем и другими металлами

Никель из шламов цветных металлов

Никель металлах и сплавах, содержащих кобальт

Никель от металлов на анионитах

Никель от металлов на катионитах

Никель, весовое определение в белом металле

Никель, определение в черных металлах

Никель, определение в черных металлах Нитроанилин

Никель, определение в черных металлах определение

Никель, осажденный методом восстановления подготовка основного металла

Общие положения. Сталь. Чугун. Легированные стали и сплавы стали с цветными металлами. Легированные чугуны Алюминий. Медь. Никель. Свинец. Монель-металл. Хавег Дерево Защитные покрытия

Определение никеля в легких и цветных металлах и сплавах

Определение никеля щелочных металлах, особо чисты

Определение свинца в меди, никеле, кадмии, кобальте, цинке, молибдене, вольфраме, реактивных солях этих металлов, в сплавах— медных, никелевых, цинковых и др

Определение тяжелых металлов (железа, алюминия, марганца, никеля, кобальта, олова, титана, висмута, молибдена, меди, ванадия, свинца и серебра)

Осаждение в виде кристаллических сульфидов никеля и кобальта и отделение их от кальция, магния и щелочных металлов

Осаждение металлов никель

Осаждение никель-фосфорных и кобальт-фосфорных покрытий, легированных другими металлами

Осаждение никеля и кобальта в виде кристаллических сульфидов и отделение этих металлов от кальция, магния и щелочей

Осаждение никеля совместно с другими металлами

Осаждение тория и отделение его от марганца, никеля, цинка, меди, кадмия, щелочноземельных металлов, магния и щелочных металлов

Отделение бериллия от марганца, кобальта, никеля, цинка, щелочноземельных и щелочных металлов

Отделение бериллия от марганца, кобальта, никеля, цинка, щелочноземельных металлов и щелочей

Отделение железа, алюминия, хрома, урана, циркония и титана от марганца, кобальта, никеля, цинка, кальция, стронция, бария, магния и щелочных металлов

Применение плазменной технологии для извлечения никеля и других металлов из серпентина

Прочие металлы и сплавы (титан, никель, кобальт, свинец, олово)

Прочность сцепления никель-фосфорных покрытий с различными металлами

Соединения металлов подгруппы никеля

Хемосорбция газов на металлах и полупроводниках Адсорбция некоторых веществ на никеле и его сплавах. Г. Д. Любарский, Хорьков

Электролиз в металлургии металлов группы железа (никель, кобальт, железо)

Электронные структуры и степени окисления железа, кобальта, никеля и платиновых металлов

Электроосаждение металлов никеля

металла из мышьяковистой меди из сплавов меди с никелем



© 2025 chem21.info Реклама на сайте