Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки и генетическая рекомбинация

    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]


    Рассмотрим теперь, каким образом молекула ДНК донора, поступившая из среды, включает свою нуклеотидную последовательность в клетку бактерии-реципиента. Мы не станем рассматривать здесь те молекулярные процессы, которые ответственны за это событие, так как мы еще не подготовлены к этому. Ограничимся лишь утверждением, что по своей природе это событие представляет собой случай генетической рекомбинации. Иными словами, экзогенной молекуле ДНК, несущей гены S или Sir " бактерии донора, удается найти гомологичную ей эндогенную молекулу ДНК, несущую R- или Str -гены в клетке реципиента. Согласно теории об информационной роли ДНК, рассмотренной в этой главе, гомологичность экзогенных S- или Str -генов донора соответствующим эндогенным R-или Str -генам реципиента представляет собой соответствие в последовательности нуклеотидов в каждой такой паре гомологичных молекул ДНК. Иными словами, последовательность оснований гомологичных молекул ДНК донора и реципиента совершенно одинакова, за исключением тех ограниченных участков, где мутация изменила последовательность оснований в одном из двух гомологов и, следовательно, индуцировала появление белка с измененной аминокислотной последовательностью. После того как экзогенная молекула ДНК нашла своего эндогенного гомолога, обе молекулы вовлекаются в процесс генетического обмена. Такой обмен приводит к интеграции экзогенной молекулы и исключению гомологичной эндогенной молекулы ДНК из набора генов бактерии-реципиента и, следовательно, к генетической трансформации этой бактерии R-формы в S-форму или из Str -типа в Str -тип. Включившись в генетические структуры бактерии-реципиента, экзогенная молекула ДНК реплицируется вместе со всеми другими молекулами трансформанта и, следовательно, передается всем потомкам бактериальной клетки, из которых она может быть впоследствии выделена для дальнейших трансформаций. [c.167]

    Способность клеток поддерживать высокую упорядоченность своей организации в хаотичной Вселенной зависит от генетической информации, которая реализуется, сохраняется, воспроизводится, а иногда и совершенствуется в четырех генетических процессах - синтезе РНК и белка, репарации ДНК, репликации ДНК и генетической рекомбинации. Эти процессы, в которых создаются и поддерживаются клеточные белки и нуклеиновые кислоты, одномерны в каждом из них информация, заключенная в линейной последовательности нуклеотидов, используется для образования либо для изменения другой линейной последовательности нуклеотидов (молекулы ДНК или РНК) или линейной последовательности аминокислот (молекулы белка). Поэтому генетические события проще для понимания, чем большинство других клеточных процессов, связанных с выражением информации, которую несут в себе сложные трехмерные поверхности белковых молекул. Быть может, именно благодаря этой относительной простоте генетических механизмов мы знаем и понимаем их гораздо лучше, чем большую часть других событий, происходящих в клетке. [c.253]


    Точковые мутации служат для гонкой подстройки генома, но долговременный эволюционный процесс должен быть связан с более радикальными генетическими изменениями. Эту функцию выполняет генетическая рекомбинация, с ее помощью геном может увеличиваться или уменьшаться (при дупликации или делеции), а его части могут перемещаться из одной области в другую, образуя новые комбинации. Составляющие части генов (их экзоны и регуляторные элементы) могут перемешиваться, давая начало новым белкам, обладающим совершенно новыми функциями. Кроме того, если какой-либо ген представлен в геноме двумя копиями, одна из них может подвергнуться мутации, что приведет к дивергенции копий и их специализации для едва различающихся функций. Таким путем геном как целое постепенно усложняется и совершенствуется. Например, у млекопитающих почти каждый ген существует в нескольких вариантах разные гены актина - для различных типов сократительных клеток, разные гены родопсина - для восприятия различных цветов, разные гены коллагена - для различных типов соединительных тканей и так далее. Экспрессия каждого гена регулируется строго и специфически. Изучение последовательностей ДНК показывает, что многие гены, даже значительно отличающиеся друг от друга, могут иметь родственные модульные области. Так например, определенная часть генов родопсина имеет общего предшественника с рядом генов, кодирующих некоторые гормоны и рецепторы (см. разд. 12.3.13) эта общая последовательность, вероятно, присутствует и в других белках (см. разд. 3.3.8). [c.236]

    Поскольку рабдовирусы не способны к генетической рекомбинации, для их изучения нельзя применить многие продуктивные подходы классической генетики. Вместе с тем для VSV характерен очень высокий, достигающий 2% уровень спонтанных мутаций, что дает возможность выделять условно-летальные мутанты [33]. Большинство выделенных мутантов являются температурочувствительными is) удалось также получить мутанты по спектру хозяев. Тесты на комплементацию выявили у /s-мутантов пять, а возможно, и шесть групп комплементации. Шестая группа, очевидно, отражает внутригенную комплементацию L-белка. [c.422]

    Механизмы генетической рекомбинации обеспечивают возможность перемещения из хромосомы в хромосому больших фрагментов ДНК Выработавшиеся для этого в процессе эволюции последовательности реакций таковы, что две спирали ДНК, разрываясь и воссоединяясь вновь, претерпевают минимальное повреждение, так что легко происходит восстановление двух целых хромосом. Существует два класса рекомбинационных событий. При общей рекомбинации начальные реакции зависят от комплементарных взаимодействий, происходящих на обширных участках между цепями двух двойных спиралей ДНК, вовлекаемых в рекомбинацию. Общая рекомбинация может поэтому происходить лишь между двумя гомологичными молекулами ДНК и, хотя хромосомы при этом обмениваются генами, общая последовательность расположения генов в хромосоме не нарушается. При сайт-специфической рекомбинации реакции спаривания зависят от узнавания - при посредстве специального белка - двух нуклеотидных последовательностей, которым предстоит рекомбинировать сколько-нибудь заметной гомологии при этом не требуется. Сайт-специфическая рекомбинация обычно изменяет относительное расположение нуклеотидных последовательностей в хромосомах. [c.313]

    До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации. На первом этапе-этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация. На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК). На третьем этапе-этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г. [c.478]

    Щелочная фосфатаза имеет молекулярный вес 80 ООО и состоит из 2 одинаковых блоков, по 380 аминокислотных звеньев каждый. Блоки соединены ионными связями. При гидролизе трипсином получается 35 полипептидов, которые могут быть хорошо разделены электрофорезом и хроматографией Исследование фосфатазы ревертантов показало, что она отличается от обычного белка из клеток дикого типа часто 1, изредка 2 аминокислотными звеньями. Мутация Р - Р приводит к клеткам, неспособным синтезировать активную щелочную фосфатазу. С помощью генетических экспериментов по рекомбинации место повреждения в цепи ДНК установлено с точностью до 2—3 нуклеотидных звеньев. Когда возникает возвратная мутация, происходит новая замена нуклеотида в том же звене или рядом и возникает опять осмысленное сочетание, но необязательно то же самое, какое было до первой мутации. Полипептидная цепь синтезируется на матрице, но одно аминокислотное звено оказывается измененным. Если замена звена [c.418]


    В процессе общей генетической рекомбинации центральная роль отводится комплементарным взаимодействиям нуклеотидных последовательностей. Кроме того, этот процесс требует участия особого белка гесА с Mr, равной 38 кДа. Белок гесА прочно связывается в виде крупных кластеров с одиночными цепями ДНК, одновременно удерживая и двойную спираль. За счет двух сайтов данный белок имеет еще один участок — для связывания и гидролиза АТР, т.е. он представляет собой ДНК-зависимую АТРазу. Благодаря особенностям белка гесА осуществляются од- [c.113]

    За последнее десятилетие генетика претерпела быструю эволюцию. Составной частью методов генетики микроорганизмов стали значительно усовершенствованные методы биохимии и биофизики. Генетические исследования физической природы генов были ускорены появлением работы Уотсона и Крика о репликации первичной генетической информации. В свете этих достижений термин ген в настоящее время редко используется без расшифровки. В микробиологической генетике ему, по сути дела, нет адекватного значения. Для обозначения соответствующего понятия у микроорганизмов появились новые термины с более точным значением, например рекон (Бензер [1]). Представление о половом размножении как единственном методе генетической рекомбинации претерпело изменение и включило альтернативные механизмы, например трансформацию, конъюгацию у бактерий, парасексуализм в грибах и др. (Понтекорво [2]). Разрабатываются методы изучения последовательности пар оснований в нуклеиновых кислотах и механизма кодирования, управляющего последовательностью аминокислот в белках приближается решение и многих других фундаментальных проблем генетики. [c.140]

    Единственный генетический эксперимент, который может быть поставлен на ВТМ, заключается в том, что используется РНК различных мутантов ВТМ. Мутанты отличаются друг от друга либо морфологически но внешней картине некрозов, которые образуются на листьях, либо по патологии заболевания. Суш,ествуют мутанты ВТМ, приводяш,ие только к местным поражениям листьев, в которые введен впрус, в то время как обычно встречаю-Ш.ИЙСЯ дикий тип ВТМ есть общее заболевание всего организма. Извлекая из разных мутантов ВТМ отдельно РНК и белок, мы можем произвести реконструкцию вирусов, соединяя различные РНК с гомологическими белками от других мутантов. В результате получаются вполне активные вирусные частицы, причем они всегда несут в себе признаки того мутанта, от которого взята РНК, и не воспринимают никаких качеств от мутанта, давшего белок. К сожалению, более сложные генетические опыты с ВТМ невозможны, так как для него не удается наблюдать генетическую рекомбинацию. [c.359]

    Далее опыты по количественному изучению генетической рекомбинации составлению генетической карты) позволили установить, что все три локуса z, у и i находятся рядом друг с другом на хромосоме бактерии и занимают область, размеры которой на целый порядок меньше расстояния между локусами La и TL. Возникает естественный вопрос какова химическая природа ренрессора, синтезируемого под влиянием информации, содержащейся в области i Ответ пока не найден. Имеются косвенные указания на то, что репрессор может быть белком (Моно, Жакоб). [c.490]

    Оказалось, что такие фаги содержат мутацию в гене, кодирующем полипептид длиной 320 аминокислот, необходимый для проникновения фага в клетку-хозяина в каждой частице фага Г2 содержится по одной молекуле такого полипептида. И наконец, мутанты группы III не могут образовывать нормальный белок оболочки, так как они содержат мутации в структурном гене этого белка. Более того, в ограничивающих условиях мутанты группы III синтезируют ненормально большие количества РФ и РП, так как плюс -цепи РНК, образующиеся в зараженных клетках, не инкапсулируются фаговым белком и, следовательно, могут служить матрицами для новых минус -цепей. Опыты по комплементации, в которых бактерии одновременно заражали двумя мутантами фага f2, показали, что три фенотипические группы четко совпадают с тремя группами комплементации при смешанном заражении бактерий двумя фаговыми мутантами, относящимися к разным или к одной и той же фенотипической группе, наблюдается соответственно нормальное или ненормальное развитие фагов. Эти результаты позволили заключить, что в РНК фага f2 закодировано не более трех белков. Следует отметить, что ни в одном из опытов со смешанным заражением не было обнаружено генетической рекомбинации между фагами. Значение такого результата неясно, так как большинство культур мутантов фага 12 содержит до 0,1 % ревертантов дикого типа. Столь высокая скорость мутаций генома РНК затрудняет поиски редких рекомбинантов. Конечно, возможно, также что генетическая рекомбинация тежду геномами РНК вообще не происходит и что этот процесс присущ только полидезоксирибонуклеотидам. [c.475]

    Штаммы вируса гриппа нашли широкое применение при изучении генетической рекомбинации, перекрестной и множественной реактивации, а также во всех тестах по определению возможности взаимного обмена отдельными частями геномов у вирусов двух разных штаммов, оба из которых активны (либо оба или один из них инактивированы). Из вирусов, содержащих одноцепочечную РНК, вирус гриппа единственный, с которым во многих лабораториях получены определенно положительные результаты во всех этих экспериментах [121]. Это необычное поведение вируса гриппа можно, по-В1щимому, понять, если вспомнить, что РНК этого вируса, по последним данным, состоит из нескольких молекул (см. гл. VI, разд. Г). В настоящее время выяснено, каким образом части генома инактивированной вирусной частицы могут посредством рекомбинации реплицироваться и включаться в инфекционные вирусные частицы потомства. Было показано, что нейраминидаза, присутствующая в стабильном рекомбинанте вируса гриппа, происходит из одного родительского штамма, а все прочие основные белки — из другого родительского штамма [284]. [c.181]

    Фактически первым примером аутогенной регуляции явились данные, полученные при изучении гена, детерминирующего синтез белка 32 у фага Т4. Этот белок играет важную роль в процессах генетической рекомбинации, репарации и репликации ДНК, в которых его функция выражается благодаря его способности связываться с одноцепочечной ДНК. Доказательством того, что синтез белка гена р32 регулируется аутогенно, явился эффект нонсенс-мутации, ведущих к перепроизводству неактивного белка. Это означало, что в тех случаях, когда функция белка нарушена, он синтезируется в больших количествах. Этот эффект проявляется на уровне трансляции мРНК гена 32 является стабильной и сохраняется независимо от поведения белкового продукта. [c.204]

    Для рекомбинации между молекулами ДНК, которые характеризуются низким уровнем или даже полным отсутствием гомологии, используются механизмы, совершенно отличные от механизмов общей рекомбинации. С сайт-специфической рекомбинацией мы уже встречались на примере интеграции профагов (гл. 7), а с незаконной рекомбинацией-при знакомстве с подвижными генетическими элементами (гл. 8). У Е. соН протекание как сайт-специфической, так и незаконной рекомбинации не зависит от генов гесА, гесВ или гесС. Различия между этими двумя типами рекомбинации выражены не очень четко и связаны со степенью сходства нуклеотидных последовательностей, участвующих в рекомбинации. В случае умеренных бактериофагов типа X участки attP и att характеризуются очень высокой специфичностью в отношении связывания специализированных белков, направляющих рекомбинацию, которые кодируются фаговыми генами int и xis. Поэтому интеграция профага практически всегда происходит в участке att , локализованном в хромосоме Е. соИ между генами gal и Ыо. Однако при делеции сайта attB интеграция профага все же происходит с заметной, хотя и значительно более низкой частотой, в целый ряд других участков на хромосоме Е. соН. Подвижные генетические элементы характеризуются существенными различиями в уровне специфичности при выборе мишени для транспозиции. [c.152]

    Этот кажущийся расточительным способ передачи информации развился у эукариот, видимо, потому, что он делает синтез белка значительно более гибким. Например, первичные транскрипты РНК одного и того же гена могут подвергаться сплайсингу разными способами, давая разные мРНК в зависимости от клеточного типа или стадии развития. Это позволяет производить разные белки под контролем одного и того же гена. Более того, поскольку присутствие многочисленных нитронов облегчает генетическую рекомбинацию между экзонами, такой способ устройства гена, видимо, имел огромное значение в ранней эволюционной истории, ускоряя процесс, посредством которого организмы синтезировали новые белки из частей ранее существовавших, вместо того, чтобы вырабатывать целиком новые последовательности. [c.131]

    Его двухцепочечная ДНК способна существовать как в линейной, так и в кольцевой форме. Развитие бактериофага может пойти, как это здесь изображено, и по литическому, и по лизогенному пути. Повреждение ДНК клетки, находящейся в лизогенном состоянии, вынуждает интегрированную фаговую ДНК (профаг) выйти из хромосомы хозяина и начать литический цикл. Включение фаговой ДНК в хромосому хозяина и выход из хромосомы осуществляются путем сайт-специфической генетической рекомбинации, катализируемой особым белком бактериофага так [c.319]

    Функциональные последовательности ДНК в геномах высших эукариот, по-видимому, собраны из небольших генетических модулей по крайней мере двух типов. Блоки кодирующих последовательностей образуют множество комбинаций для синтеза белков регулирующие последовательности рассеяны среди длинных некодирующих участков и контролируют экспрессию генов. Как кодирующие последовательности (экзоны). так и регуляторные последовательности (энхансеры) по размеру обычно не превышают нескольких сот нуклеотидных пар. В геномах происходят разнообразные генетические рекомбинации, обусловливающие возникновение дупликацип и перенос последовательностей ДНК. В некоторых случаях дутщируются целые гены, которые могут затем приобретать новые функции. В результате рекомбинации иногда возникают новые белки, при этом происходит перетасовка экзонов ти изменение экспрессии генов за счет перекомбинации энхансеров. Перестановка последовательностей имеет огромное значение для эволюции организмов, у эутриот она в значительной мере упрощена благодаря прерывистой структуре генов эукариот. Важно также, что гены эукариот подвержены многочисленным активирующим и подавляющим влияниям, которые оказывают на них разные комбинации удаленных от них энхансеров. [c.248]

    Для сравнения рассмотрим популяцию, первоначально состоящую из диплоидных особей, которые размножаются бесполым способом. В отсутствии генетической рекомбинации ничто не препятствует тому, чтобы две копии каждого гена эволюционировали различными путями. Вредные рецессивные мутации будут накапливаться в геноме до тех пор, пока диплоидность не сменится состоянием, при котором общее количество ДНК остается прежним, но сохраняется лишь одна функционирующая копия каждого из первоначальных необходимьгх генов. Организм становится функционально гаплоидным . Нредставление о промежутках времени, необходимых для подобных эволюционных изменений, можно получить, рассматривая эволюцию чукучановых рыб Эти рыбы происходят от предков, у которых около 50 млн лет назад произошла полная дупликация прежде диплоидного генома и они стали, таким образом, тетранлоидами. Подсчитано, что около 50% лишних пар генов, кодирующих белки, утратили с тех пор свое функциональное значение. [c.11]

    Процесс, который мы обсуждали до сих пор, называется общей генетической рекомбинацией, поскольку обмены могут происходить между любыми парами гомологичных последовательностей в родительских молекулах ДНК. У Е. соИ общая рекомбинация зависит от генов гес. В клетках гес бактериальная ДНК не может рекомбинировать с экзогенными молекулами ДНК. Были идентифицированы три гена гес. гесА, гесВ и гесС. Белки тесВ (масса 140 Да) и тес С (128 кДа)-две субъединицы одной нуклеазы, которая расплетает двухспиральную ДНК и расщепляет на куски сначала одну из расплетенных цепей, а затем дру- [c.200]

    Рекомбинационные процессы играют также ведущую роль в эволюции строения геномов в целом. Дело в том, что перестройки генетического материала часто можно объяснить рекомбинацией между гомологичными последовательностя.ми, оказавшимися в негомологичном положении (роль таких последовательностей могут выполнять, например, мобильные генетические элементы см. гл. V). На рис. 81 (см. с. 126) показан один важный частный случай ошибочной рекомбинации — неравный кроссинговер. В результате этого процесса генетический материал одной из гомологичных хромосо.м делегирует, но в другой хро.мосо.ме возникает дупликация. Считается, что такие дупликации играют важную роль в возникновении родственных, но различных генов, поскольку присутствие в геноме лишних копий какого-либо гена позволяет им сравнительно свободно из.ме-няться, что, в принципе, может привести к возникновению новых функций белка — продукта гена. По всей вероятности, это один из путей возникновения мультигенных семейств, характерных для геномов высших эукариот и кодирующих белки со сходными, но различными функциями. [c.109]

    Третий том посвяшен биохимии человека и включает данные по пищеварению и всасыванию, интеграции обмена веществ, гормонам и питанию человека рассмотрены вопросы, связанные с передачей генетической информации, структурой хромосом и генов, синтезом белка и его регуляцией, процессами репарации ДНК, мутащ ями, рекомбинацией и клонированием генов. Предназначена для биологов разных специальностей, медиков, студентов и всех лиц, интересующихся молекулярными основами процессов жизнедеятельности. [c.740]

    Таким образом, из двух главных компонентов хромосомы — ДНК и белка — только ДНК является носителем генетической информации. В классической генетике гены не отождествлялись с какими-либо конкретными химическими соединениями теперь мы знаем, что они представляют собой определенные участки молекулы ДНК, т. е. последовательности нуклеотидов в двухцепочечном полидезоксирибонуклеотиде. Вопрос об удвоении хромосом рассматривается в следующей главе. Рекомбинация, по крайней мере у гаплоидных организмов, происходит, по-видимому, путем разрыва и воссоединения хромосом. [c.484]

    Для сравнения приведем здесь оценки масштаба генетической карты у других организмов. У бактериофага Т , но Бензеру, 1 единица рекомбинации соответствует 250 парам нуклеотидов, у Drosophila, по Понтекорво, — 3 -10 пар нуклеотидов. Зная масштаб генетической карты, можно определить физический размер одного цистрона и оценить кодовое число. Мы видели выше (стр. 333), что размеры цистрона фосфатазы составляют примерно 0,3 единицы вероятности рекомбинации (по расстояниям на генной карте между крайними из изученных мутантов).Это соответствует 1500 парам нуклеотидных звеньев. Молекулярный вес цистрона Р составляет 1500 330 2 = 10 . Белок фосфатаза имеет молекулярный вес 80 ООО, т. е. состоит примерно из 800 аминокислотных звеньев, но опыт показывает, что в макромолекуле этого белка имеется 2 одинаковые структурные единицы. Следовательно, кодированы 400 аминокислотных звеньев белка С помощью 1500 нуклеотидных звеньев нуклеиновой кислоты. [c.340]

    Вместе с тем многие основные вопросы еще пе решены. Например, важно выяснить, что именно передается при конъюгации из клетки в клетку, — хромосома, т. е. полимолекулярная структура из ДНК и белков, или же отдельные молекулы ДНК. При трансформации в клетку проникает ДНК в виде отдельных макромолекул, при трансдукции фагом, по-видимому, также одна ДНК. Во всяком случае, из опытов Херши следует, что фаг впрыскивает в клетку почти чистую ДНК (нрпмесь белка не превышает 0,5%). Что происходит при конъюгации, неясно. Известно лишь, что различные цитоплазматические частицы через соединительную трубку не передаются и в женских клетках не появляются. Это было показано для ферментных белков и частиц вирусов и те и другие не проходят при конъюгации клеток. Все это делает вероятным механизм конъюгации, при котором белковая оболочка хромосомы распадается и в женскую клетку проходят молекулы ДНК, несущие генетические маркеры. Однако прямым опытом это положение не доказано. Наконец, вопрос, ван ный для понимания рекомбинации, — это механизм расщепления зиготы в потомстве. [c.341]

    Херши изучил химически синтез ДНК фага, воспользовавшись как раз тем обстоятельством, что ДНК содержит чуждое клетке основание — оксиметилцитозии. Выяснилось, что в клетке синтезируются готовые макромолекулы ДНК, образующей резервуар, в котором идут интенсивные процессы генетического обмена и рекомбинации. Резервуар ДНК содержит 30—50 макромолекул ДНК (в расчете на двойные спирали весом 2 10 у). Одновременно в клетке идет синтез собственных белков фага. Начиная с 11-й мин. начинается созревание корпускул фага Tj, строящихся из ДНК и белковой оболочки. Количество ДНК во внутриклеточном резервуаре становится постоянным, и количество синтезируемых молекул равно количеству застраивающихся в готовые частицы фага. Примерно на 20—25-й мин. число готовых корпускул фага достигает 100—150, и клетка лизирует, внезанно разрываясь и выпуская в среду от 100 до 200 готовых фагов. [c.365]

    Еще более важной является проблема генетического риска, возможного получения мутантов с содержанием токсичных или аллергенных для человека белков или других опасных соединений. Реальный риск, связанный с поведением чужеродного гена в реципиентной клетке, гипотетически всегда существует. Это прежде всего может вызываться плейотроп-ным эффектом при взаимодействии и взаимозаменяемости генов. По мнению К.Г. Газаряна, дестбилизация генома при трансгенозе может происходить не только за счет обогащения генома новыми генами или мутагенного эффекта вставки, а, возможно, в силу индуцирования эндогенных систем рекомбинации и активации молчащих генов. Все это дает основания считать теоретически возможным появление при трансгенозе опасных для здоровья и жизни человека генотипов. [c.405]


Смотреть страницы где упоминается термин Белки и генетическая рекомбинация: [c.278]    [c.113]    [c.493]    [c.304]    [c.306]    [c.117]    [c.236]    [c.303]    [c.304]    [c.305]    [c.306]    [c.319]    [c.248]    [c.33]    [c.206]    [c.283]    [c.283]    [c.980]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.28 , c.29 , c.30 , c.31 , c.32 ]




ПОИСК





Смотрите так же термины и статьи:

Рекомбинация



© 2025 chem21.info Реклама на сайте