Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетическая сайт-специфическая

    В результате биохимического и генетического изучения белка-репрессора лактозного оперона. репрессора бактериофага лямбда, а также других регуляторных белков у бактерий была сформулирована общая модель регуляции транскрипции у прокариот. Предполагалось, что сайт-специфические белки либо ингибируют, либо стимулируют транскрипцию какого-либо гена, присоединяясь к ДНК рядом с промотором-участком, с которого РНК-полимераза начинает синтез РНК. Считали, что изменение в положении таких регуляторных белков по отношению к ДНК (связывание или отсоединение) включает и выключает гены. [c.183]


Рис. 5-67. Два механизма, используемых разными классами ферментов сайт-специфической рекомбинации. В обоих случаях специфичный фермент (показан серым) связывается с особой нуклеотидной последовательностью в хромосоме мобильного генетического элемента (отмечена штриховкой) и удерживает эту последовательность в тесном контакте с определенным участком хромосомы-мишени. А. Фермент делает ступенчатый разрез по обе стороны очень короткой гомологичной последовательности на обеих хромосомах (12 нуклеотидов в случае лямбда-интегразы), а затем соединяет цепи партнеров коротким ступенчатым соединением Б. Фермент делает ступенчатый разрез в хромосоме-мишени и присоединяет выступающие ее концы к ровно срезанным концам мобильного элемента. В этом случае по обе стороны включившегося элемента появляются две короткие идентичные нуклеотидные последовательности - дупликации соответствующего участка ДНК-мишени (от 3 до 12 Рис. 5-67. Два механизма, используемых <a href="/info/1460390">разными классами</a> ферментов <a href="/info/33360">сайт-специфической рекомбинации</a>. В обоих случаях <a href="/info/38771">специфичный фермент</a> (показан серым) связывается с <a href="/info/1911869">особой нуклеотидной последовательностью</a> в хромосоме <a href="/info/1338530">мобильного генетического элемента</a> (отмечена штриховкой) и удерживает эту последовательность в <a href="/info/416606">тесном контакте</a> с определенным участком хромосомы-мишени. А. <a href="/info/1863282">Фермент делает</a> <a href="/info/1869001">ступенчатый разрез</a> по обе стороны очень короткой <a href="/info/33266">гомологичной последовательности</a> на обеих хромосомах (12 нуклеотидов в случае <a href="/info/1339379">лямбда-интегразы</a>), а затем соединяет цепи партнеров коротким <a href="/info/1131730">ступенчатым соединением</a> Б. <a href="/info/1863282">Фермент делает</a> <a href="/info/1869001">ступенчатый разрез</a> в хромосоме-мишени и присоединяет выступающие ее концы к ровно срезанным концам <a href="/info/33108">мобильного элемента</a>. В этом случае по обе стороны <a href="/info/1682280">включившегося элемента</a> появляются две короткие <a href="/info/1324726">идентичные нуклеотидные</a> последовательности - дупликации соответствующего участка ДНК-мишени (от 3 до 12
    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]


    Негомологичная рекомбинация. Рекомбинационные процессы, в которых участвуют сегменты ДНК, не обнаруживающие заметной генетической гомологии, называют негомологичной рекомбинацией. Так же как и сайт-специфическая рекомбинация, она представляет собой интеграционную форму рекомбинации, т.е. не обмен, а соединение ДНК. Негомологичная рекомбинация независима от гена гес А. К такой рекомбинации способны 1) вставочные последовательности (IS-эле-менты) 2) транспозоны (Тп) 3) бактериофаг ц (мю). Молекулярный механизм негомологичной рекомбинации еще не вполне выяснен. [c.455]

    Регуляция экспрессии генов посредством сайт-специфической инверсии, вероятно, не является широко распространенным способом генетической регуляции у прокариотических организмов. Судя по всему, эволюция большинства регуляторных механизмов прокариот была направлена на создание систем быстрого изменения уровня экспрессии тех или иных генов в ответ на быстрые изменения в окружающей среде. В то же время система вариации фаз организована таким образом, что соответствующие изменения происходят с очень низкой вероятностью и не могут служить целям быстрого реагирования на изменения окружения. Система сайт-специфической инверсии скорее предназначена не для оперативной подстройки к изменяющимся условиям среды, а для подготовки целой популяции клеток к встрече с новыми условиями окружения посредством расширения возможностей генетической вариабельности в популяции. [c.202]

    Основой для возникновения подобных семейств генов и генных сегментов служит генетическая рекомбинация. Выше обсуждались молекулярные механизмы общей и сайт-специфической рекомбинации. В данном разделе будут рассмотрены некоторые результаты воздействия [c.237]

    В середине 70-х годов было обнаружено, что геном вируса гриппа состоит из восьми отдельных сегментов РНК. Это послужило основой для многочисленных генетических исследований вируса. В отличие от изучения генетических систем других отрицательно-нитчатых вирусов, таких, как вирус везикулярного стоматита [199], у генетиков, занимающихся вирусом гриппа, почти нет проблем по установлению местоположения мутации, и в случае необходимости они могут определить точное изменение нуклеотидной последовательности [209]. Действительно, ясна линия действия по созданию сайт-специфических мутаций в отдельных генах вируса гриппа, клонированных в М13 [278], хотя есть еще проблемы с повторным введением подобных генов в систему вирус — клетка хозяина. [c.240]

    Механизмы генетической рекомбинации обеспечивают возможность перемещения из хромосомы в хромосому больших фрагментов ДНК Выработавшиеся для этого в процессе эволюции последовательности реакций таковы, что две спирали ДНК, разрываясь и воссоединяясь вновь, претерпевают минимальное повреждение, так что легко происходит восстановление двух целых хромосом. Существует два класса рекомбинационных событий. При общей рекомбинации начальные реакции зависят от комплементарных взаимодействий, происходящих на обширных участках между цепями двух двойных спиралей ДНК, вовлекаемых в рекомбинацию. Общая рекомбинация может поэтому происходить лишь между двумя гомологичными молекулами ДНК и, хотя хромосомы при этом обмениваются генами, общая последовательность расположения генов в хромосоме не нарушается. При сайт-специфической рекомбинации реакции спаривания зависят от узнавания - при посредстве специального белка - двух нуклеотидных последовательностей, которым предстоит рекомбинировать сколько-нибудь заметной гомологии при этом не требуется. Сайт-специфическая рекомбинация обычно изменяет относительное расположение нуклеотидных последовательностей в хромосомах. [c.313]

    Для доставки в клетки крупных генетических конструкций (>10 т. п. н.) с помощью эндосом-ного клеточного транспорта, позволяющего избежать лизосомного разрущения ДНК, образуют конъюгат ДНК с другими молекулами. Для этого поли-Ь-лизин ковалентно сшивают с молекулой, связывающейся со специфическим клеточным рецептором, а затем добавляют ДНК. В результате получается компактная, плотно скрученная структура (тор), на внешней поверхности которой располагаются сайты связывания с клеточным рецептором (рис. 21.11). К сожалению, подобный конъюгат, несмотря на свою специфичность, обладает низкой эффективностью трансфекции. Все созданные к на- [c.501]

    Сайты мутаций узнаются специальными нуклеазами, которые вырезают поврежденный участок из ДНК, а затем другие ферменты синтезируют замещающую последовательность. Вместе эти активности составляют репарирующую систему. Наряду с репарацией повреждений путем вырезания и замещения существуют системы, исправляющие вредные последствия репликации поврежденной ДНК. Такие исправляющие системы родственны системе генетической рекомбинации. Клетки Е. соИ, лишенные исправляющих систем, становятся чрезвычайно чувствительными к определенным типам повреждений. Репарирующие и исправляющие системы наиболее полно охарактеризованы у Е. соИ, однако их аналоги в клетках эукариот, вероятно, играют такую же важную роль. Можно предположить, что определенные болезни человека возникают в результате неправильного функционирования специфических репарирующих систем. [c.431]


    Рассмотрим теперь вкратце не совсем понятные химические явления, лежащие в основе таких явлений, как генетическая рекомбинация, интеграция вирусной ДНК с геномом клетки-хозяина и исключение профага из хромосомы клетки-хозяина. О сложности процесса рекомбинации свидетельствует тот факт, что у мутантов, дефектных по способности к рекомбинации, мутации локализуются не в одном, а в нескольких участках (генах) хромосомы Е. oli-, соответствующие гены обозначаются через гесА, В, С, F, G и Н. Бактерии с мутациями в некоторых из этих генов необычайно чувствительны к ультрафиолетовому облучению, что свидетельствует об их неспособности репарировать (восстанавливать) повреждения ДНК, вызванные действием ультрафиолета (гл. 13, разд. Г, 2). Из этого следует, что некоторые из ферментов, обеспечивающих процесс рекомбинации, нужны клетке также и для восстановления повреждений, вызванных действием ультрафиолетового излучения. Однако специфические функции большинства продуктов этих генов все еще до конца не выяснены. Считают, что у Е. oli имеются две полноценные системы общей рекомбинации. В геноме фага Я, имеются гены, кодирующие другую рекомбинационную систему, функционирующую независимо от продуктов генов фага Я, inf и xis (рис. 15-15), необходимых для интеграции и исключения генетического материала вируса и обеспечивающих процессы сайт-специфической (для определенных участков геномов) рекомбинации между генами клетки-хозяина и вируса. [c.281]

    Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы — субтилизина они применили метод химической мо дификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность. Вообще говоря, методы химической модификации не только жестки и неспецифичны они плохи еще и тем, что с их помощью невозможно вызвать множественные желаемые изменения, особенно если модифицируемые аминокислотные остатки погружены в глубь третичной структуры белка. Для этого нужна белковая инженерия, основанная на генетической инженерии. Сегодня она осуществляется при помощи двух хорошо освоенных методов (гл. 7). Так, сайт-специфический мутагенез осуществляется следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подх.одящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти — пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов. [c.183]

    Для рекомбинации между молекулами ДНК, которые характеризуются низким уровнем или даже полным отсутствием гомологии, используются механизмы, совершенно отличные от механизмов общей рекомбинации. С сайт-специфической рекомбинацией мы уже встречались на примере интеграции профагов (гл. 7), а с незаконной рекомбинацией-при знакомстве с подвижными генетическими элементами (гл. 8). У Е. соН протекание как сайт-специфической, так и незаконной рекомбинации не зависит от генов гесА, гесВ или гесС. Различия между этими двумя типами рекомбинации выражены не очень четко и связаны со степенью сходства нуклеотидных последовательностей, участвующих в рекомбинации. В случае умеренных бактериофагов типа X участки attP и att характеризуются очень высокой специфичностью в отношении связывания специализированных белков, направляющих рекомбинацию, которые кодируются фаговыми генами int и xis. Поэтому интеграция профага практически всегда происходит в участке att , локализованном в хромосоме Е. соИ между генами gal и Ыо. Однако при делеции сайта attB интеграция профага все же происходит с заметной, хотя и значительно более низкой частотой, в целый ряд других участков на хромосоме Е. соН. Подвижные генетические элементы характеризуются существенными различиями в уровне специфичности при выборе мишени для транспозиции. [c.152]

    В другом классе ферментов, осуществляющих сайт-специфическую рекомбинацию, эта избирательность выражена не столь сильно. Подобно лямбда-интегразе, каждый из этих ферментов узнает специфическую последовательность ДНК в гом мобильном генетическом элементе, рекомбинацию которого он катализирует. Отличает же эти ферменты от лямбда-интегразы то обстоятельство, что им не требуется специфической последовательности-мишени, а также то, что они не образуют ступенчатого (гетеродуплексиого) соединения. Вместо этого под их воздействием в ДНК-мишени возникает ступенчатый (зигзагообразный) разрыв и появляются свободные концы цепей ДНК, которые затем ковалентно связываются со специфической последовательностью ДНК мобильного генетического элемента (рис. 5-67, Б). Благодаря этому весь мобильный элемент оказывается включенным в молекулу ДНК-мишени По обе стороны от включившегося мобильного элемента в рекомбинантной молекуле ДНК остаются короткие одноцепочечные участки. [c.311]

    Его двухцепочечная ДНК способна существовать как в линейной, так и в кольцевой форме. Развитие бактериофага может пойти, как это здесь изображено, и по литическому, и по лизогенному пути. Повреждение ДНК клетки, находящейся в лизогенном состоянии, вынуждает интегрированную фаговую ДНК (профаг) выйти из хромосомы хозяина и начать литический цикл. Включение фаговой ДНК в хромосому хозяина и выход из хромосомы осуществляются путем сайт-специфической генетической рекомбинации, катализируемой особым белком бактериофага так [c.319]

    Фактор как долго может определяться са.мопроизвольно с помощью молекулярного механизма транскрипции и трансляции ДНК для нас же особый интерес представляют факторы сколько и где . Если сайт (т. е. клеточное окружение развивающейся козетки на пути от нервной пластинки к специализированному органу-мишени) влияет на экспрессию гена, то это предполагает ограничение генетической детерминированности организма. В самом деле, имеются доказательства того, что клетки влияют друг на друга в период развития. Это происходит либо при прямом контакте, молекулярный механизм которого не вполне ясен, либо при выделении химических сигналов, называемых факторами роста нервов. Последние мы будем обсуждать в связи с термином трофизм, а механизм прямого контакта будет показан на примере образования и стабилизации синапсов. Следует отметить, что не только генетическая программа определяет окончательную структуру нейрональной сети, существенно также положение отдельной клетки в пространстве и времени. Именно последнее и помогло сделать следующий вывод геном человека содержит >10 генов, а число синапсов >10 (10 ° нейронов, каждый из которых имеет 10 синапсов, см. выше), так что маловероятно (хотя и нельзя считать совсем невозможным вследствие огромного разнообразия антител, продуцируемых ограниченным числом генов), чтобы специфичность каждого отдельного синапса программировалась определенным участком гена. Мы еще вернемся к этому важному вопросу при рассмотрении синаптогенеза, т. е. процесса образования и стабилизации специфических синапсов. Представляется вполне допустимым, что развитие нервной системы контролируется несколькими факторами генетическим, трофи- [c.319]

    Большинство генетических процессов зависит от взаимодействия между молекулами белков, которые одновременно связываются с близлежащими сайтами ДНК. В простейшем случае два сайт-специфических белка, участки связывания которых частично или полностью перекрываются, конкурируют друг с другом за место на спирали ДНК (рис. 9-15, А). Например, белок-репрессор может подавлять транскрипцию гена, блокируя связывание активирующего белка с ДНК. Однако белки могут и помогать друх другу более прочно удерживаться на ДНК. Такое кооперативное связывание может происходить как между двумя различными молекулами белка (рис, 9-15, Б), так и между двумя копиями молекул одного типа. В последнем случае белки, как правило, связываются по типу все или ничего и образуют на ДНК кластеры При повышении концентрации этих белков, их связывание с ДНК резко возрастает (рис. 9-15, В). В качестве примера кооперативно связывающихся белков такого типа можно привести спираль-дестабилизируюгций белок, белок гее А (гл. 5) и гистон Н1. [c.106]

    Обратимся теперь к методу Фершта, точнее подходу, включающему целый комплекс методов. Своим появлением он обязан становлению в начале 1980-х годов генетической инженерии, сделавшей доступными любые полипептидные последовательности стандартных аминокислот. В результате открылась уникальная возможность получения сколь угодно представительного набора искусственных белковых аналогов, отличающихся от природного объекта числом и местом аминокислотных замен [125, 126]. На основе сайт-направ-ленного мутагенеза был разработан метод экспериментальной оценки энергии невалентных взаимодействий, впервые опробованный при изучении функционирования тирозил-тРНК-синтетазы [127—129]. Выявив в этих работах возможность получать количественные данные о структуре и энергетике боковых цепей при изменении аминокислотной последовательности, Фершт и соавт. [130-132] предприняли попытку использовать метод в исследовании обратимой денатурации белков, причем сразу в двух аспектах. Во-первых, в создании принципиально нового метода изучения механизма свертывания белковой цепи на уровне отдельных аминокислотных остатков. Сайт-специфические мутантные белки служат здесь инструментами — зондами, позволяющими получать тонкую структурную информацию о процессе самоорганизации белка, недоступную другими экспериментальными методами. Во-вторых, в разработке новой стратегии исследования ренатурации белков с помощью обычно используемых методов ЯМР- и КД-спектроскопии, остановленной струи, изотопного обмена и т.д. Существенное изменение ситуации обусловлено появлением у каждого метода вместо одного объекта исследования многочисленной группы его целенаправленно модифицированных аналогов. Расширение материальной базы открыло перспективу для повышения интерпретационных возможностей экспериментальных методов, особенно при их комплексном использовании. Реализация возросших возможностей потребовала совершенствования методологических подходов. [c.386]

    Белковая инженерия. В начале 80-х годов в генетической инженерии был разработан метод, позволяющий получать измененные белки, отличающиеся от белков-прототипов заменой всего лищь одного аминокислотного остатка в строго заданном положении. Для биотехнологии этот метод, названный сайт-специфическим мутагенезом, или белковой инженерие интересен тем, что позволяет целен равЛеннб изменять структуру ферментов, а значит, их каталитические свойства и стабильность. [c.133]

    В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндонуклеазы рестриктазы, катализирующие расщепление молекулы двухцепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4-7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.). [c.481]

    Реально ли конструирование ферментов Вероятно, ответ на этот вопрос можно будет получить с развитием генетической инженерии. Первые успехи в сайт-специфическом мутагенезе ферментов уже имеются показана возможность биосинтеза Т4 лизоцима, содержащего дополнительную дисульфидную связь для увеличения стабильности (L. D. Реггу, R. Wetrel, 1984). Для тирозил-тРНК-синтетазы заменой аминокислоты в структуре активного центра удается понизить значение Км ферментативной реакции (А. R. Fersht et а I, 1984). [c.67]

    В этой главе была рассмотрена рекомбинация сцепленных маркеров, или кроссинговер между гомологичными хромосомами. Классический кроссинговер и конверсия как отражение событий, инициирующих реципрокную рекомбинацию, — не единственный способ обмена участками генетического материала. Для других типов рекомбинации, вовлекающих участки не гомологичные по локализации в пределах одной или даже разных хромосом (см. гл. 13), обычно необходимы достаточно протяженные одинаковые или очень сходные нуклеотидные последовательности в ДНК. С этой точки зрения рекомбинация почти всегда гомологична. Тем не менее существуют механизмы и негомологичной в строгом смысле рекомбинации (гл. 13). Еще один механизм — сайт-специфической рекомбинации — будет рассмотрен в гл. 9. При этом типе рекомбинации протяженной гомологии не требуется. [c.167]

    Сайт-специфическая рекомбинация происходит точно, но не безошибочно. Приблизительно один раз на ] млн. при эксцизии профага рекомбинация осуществляется не в а -сайте, а захватывает участки gal или Ыо. Так возникают трансдуцирующие частицы, у которых часть генетического материала профага замещена генами бактерии (рис. 9.8). Во всех этих случаях в оекомбинацию вовлекаются те же последовательности из 15 пар нуклеотидов, которые встречаются в генах gal и Ыо. За пределами этих 15 п. н. гомология отсутствует. Очевидно, что механизм сайт-специфической рекомбинации резко отличается от механизма кроссинговера, рассмотренного в гл. 7. Сайт-специфическую рекомбинацию проводит фермент интеграза, кодируемый локусом int фага к. [c.214]

    При первых делениях аскоспоры тип спаривания переключается на противоположный пцд контролем гена НО (от англ. homo-thallism). Ген НО кодирует эндонуклеазу, которая производит двунитевой сайт-специфический разрез ДНК в локусе МАТ или МАТа в зависимости от того, какая аллель присутствует в этом локусе. Двунитевой разрез инициирует направленную конверсию, при которой генетическая информация кассеты HML i замещает информацию, содержащуюся в локусе МАТ (или HMR замещает информацию МАТа). При этом кассеты сохраняют содержащийся в них генетический материал, а генетический материал, находившийся в локусе МАТ, теряется. Такое переключение происходит только в двух клетках на стадии микроколонии, состоящей из четырех клеток. После этого клетки типа спаривания а копулируют с клетками типа спаривания а. Образуются диплоидные клетки, гетерозиготные по МАТ /МАТц, и ген НО выключается. Далее гетерозиготный диплоид стабильно размножается до нового мейоза и споруляции, после чего при изоляции аскоспор весь процесс в ходе их прорастания повторяется. [c.431]

    Что же представляли собой самые ранние генетические системы, если интроны действительно имеют столь древнее происхождение В частности, как это предположение соотносится с вопросом о том, какие информационные молекулы возникли раньще, ДНК или РНК Имеются свидетельства в пользу того, что РНК появилась первой и стала основой самых ранних кодирующих систем. Например, рибосомная, транспортная и матричная РНК представляют собой центральные элементы аппарата трансляции всех организмов, а также лежат в основе функционирования генетического кода. Поэтому можно думать, что эти молекулы существовали до момента эволюционной дивергенции про- и эукариот и присутствовали в самых ранних генетических системах. Более того, короткие молекулы РНК могут синтезироваться на РНК-матрице в ходе чисто химических реакций в отсутствие каких бы то ни было белков. Кажется вполне вероятным поэтому, что первые РНК были самореплипирующимися молекулами, которые транскрибировались и транслировались при помощи примитивных механизмов. Молекулы РНК могут также выступать в роли катализаторов модификации РНК. Так, компонента РНКазы Р Е. соИ, представленная молекулой РНК, катализирует сайт-специфическое расщепление предшественников транспортных РНК (разд. 3.3). Кроме того, как уже упоминалось, интроны в пред-щественниках рибосомных РНК у некоторых простейших и грибов могут вырезаться без участия белков. ДНК, насколько известно, не катализирует ни одну из этих реакций. [c.18]

    Вездесущность транспозирующихся элементов может рассматриваться либо как доказательство их важности для эукариот и прокариот, либо как указание на то, что они одинаково успешно размножаются в составе геномов любого типа. Вместе с плазмидами, способными переносить генетическую информацию между бактериями, транспозоны прокариот обеспечивают подвижность генов хозяина (с успехом компенсируя отсутствие истинного полового процесса). В некоторых случаях механизмы, подобные транспозициям, вовлекаются в регуляцию генов. У эукариот, с другой стороны, уже известны отдельные случаи, когда перемещение последовательностей из сайта или в специфические сайты играет роль в регуляции генов. В их геномах найдены также элементы. [c.472]

    Впервые сайт-специфические белки, связывающиеся с ДНК, были обнаружены у бактерий. С помощью генетического анализа у этих микроорганизмов удалось доказать существование регуляторных белков, таких как репрессор 1ас-оперона, репрессор бактериофага лямбда и сго-белок. Эти белки были выделены при последовательном фракционировании клеточных экстрактов на хроматографических колонках, а специфически связывающие их участки ДНК определены методом футприн-тинга (см. разд. 4.6.6). Аналогичными методами были выделены и охарактеризованы пфвые сайт-специфические ДНК-связывающие белки у эукариот Т-антиген вируса ЗУ4о, фактор транскрипции ТРИМ и рецептор стероидного гормона. [c.103]

    Переключение типа спаривания инициируется сайт-специфической эвдонуклеазой (НО-эндонуклеазой), являющейся продуктом гена НО, Этот фермент делает двухцепочечный разрез в ДНК локуса МАТ, в результате эта область вырезается и затем ре синтезируется, при этом матрицей служит молчащий ген противоположного типа спаривания (рис. 10-30). Транскрипция гена НО, определяющего, когда и где происходит переключение, строго контр о Л1 у ется. С помощью генетического анализа было показано, что контроль обеспечивают по меньщей мере щесть регуляторных генов (от SWI 1 до SWI 6). В связи с тем, что при почковании дрожжевые клетки делятся асимметрично, одна из двух образовавшихся клеток больше ( материнская ), чем другая ( дочерняя ). Большинство материнских клеток в ходе дальнейшего роста переключает тип спаривания, а вновь образовавшиеся дочерние клетки (возникающие из почки) не синтезируют продукт гена НО и не способны переключаться до тех пор, пока г )и делении они не станут материнскими клетками (рис. 10-31). Асимметрия переключения оказалось связанной с асимметричным наследованием белка SWI 5, который Г5)исоединяется к ДНК перед геном НО и необходим для его транскрипции. Полагают, что белок SWI5 (либо его активная форма) наследуется лишь материнской клеткой Остается непонятным, почему этого белка нет в почке, но характер его наследования может служить моделью асимметричной сегрегации некоторых признаков, наблюдаемой у высших эукариот. [c.202]

    В процессе генетического переноса участвуют бактерия-реципиент и бактерия-донор. Степень участия их неравномерна в ре-ципиентную клетку попадает лишь фрагмент экзогенной ДНК бактерии-донора, который взаимодействует с цельной хромосомой реципиента, в результате чего происходит частичное перераспределение (рекомбинация) генетического материала с образованием рекомбинанта. Все этапы рекомбинации у бактерий обеспечиваются соответствующими ферментами рестриктазами, лигазами и др. У бактерий различают три типа рекомбинаций общую, незаконную и сайт-специфическую. Общая, или гомологичная, классическая, рекомбинация происходит, если в структуре взаимодействующей ДНК имеются гомологичные участки (от греч. homologia — соответствие). Так называемая незаконная рекомбинация для своего осуществления не требует значительной гомологии ДНК взаимодействующих структур. [c.82]

    По аналогии с исключением профага X (гл. 15, разд. Г, 8) из хромосомы Е. oli такая потеря генов должна происходить в специфических сайтах (участках) ДНК. Постоянная потеря генетического материала может, по-видимому, происходить при дифференцировке плюрипотентных стволовых клеток, образующих клетки крови. Из указанных плюрипотентных клеток сначала формируются три другие линии стволовых клеток, а именно, миелоидные, эритрондные и лимфоидные, которые подвергаются дальнейшей дифференцировке, как показано на схеме. [c.364]

    Выбор аминокислоты, подлежащей замене, как правило, производится с учетом ее роли в функционировании белка. Данные об этом получают в ходе генетических исследований или методом рентгеноструктурного анализа трехмерной структуры белка. Изменяя специфические сайты или целые участки белковой молекулы, можно повысить термостабильность белка, изменить его чувствительность к pH, специфичность, аллостерическую регуляцию, потребность в кофакторе и другие свойства. Так, термостабильность триозо-фосфатиозомеразы удалось повысить, заменив аминокислоты в двух позициях. Этот подход можно использовать как для придания новых свойств уже существующим белкам, так и для создания уникальных ферментов. [c.175]

    Рестриктирующие эндонуклеазы. Эндодезоксирибонуклеазы, узнающие специфическую нуклеотидную последовательность и вызывающие расщепление обеих цепей ДНК в сайтах, которые определяются нуклеотидными последовательностями, обладающими симметрией второго порядка относительно центра. Эти ферменты являются важным инструментом генетической инженерии. [c.1018]

    Мутации в кластерах box 9 и box 2 также не комплементируют мутации в других кластерах. Следовательно, по такому генетическому критерию они неотличимы от мутаций, затрагивающих экзоны. Однако их биохимические свойства различны, на что указывает нарущение синтеза соответствующей нормальной мРНК. При анализе нуклеотидной последовательности ДНК обнаруживается, что оба этих кластера находятся в области 14. Мутации кластера box 9 затрагивают последовательность ДНК длиной 8 п.п., находящуюся на 350 п.н. правее границы с В4. Мутации кластера box 2 смещены к другому концу интрона и находятся на расстоянии 25 п. н. левее границы с В5. Обе группы мутаций препятствуют объединению участков В4 и В5 в результате удаления области 14 при сплайсинге. Существование этих мутаций указывает на два важных обстоятельства общего характера. Во-первых, мутации, затрагивающие специфические сайты, могут препятствовать узнаванию определенньрс границ сплайсинга, причем такие сайты могут быть достаточно удалены от самих границ. Во-вторых, с помощью генетических методов анализа эти мутации нельзя отличить от мутаций, затрагивающих кодирующие белок участки. (Точно так же неразличимы классические i u -мутации, затрагивающие промоторы или операторы и их структурные гены см. гл. 14.) [c.259]


Смотреть страницы где упоминается термин Генетическая сайт-специфическая: [c.283]    [c.283]    [c.301]    [c.202]    [c.150]    [c.224]    [c.301]    [c.200]    [c.462]    [c.480]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.310 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.310 ]




ПОИСК





Смотрите так же термины и статьи:

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте