Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия разрешение

    Во многих типах масс-спектрометра разрешение ухудшается по мере увеличения массы ионов. Поэтому показателем качества прибора служит единичное разрешение — наибольшая величина массы иона, при которой достигается разделение двух пиков одинаковой высоты. Если этому критерию, например, удовлетворяют массы от 1000 до 1001, то говорят, что такой прибор имеет разрешение 1000. Единичное разрешение магнитного масс-спектрометра может достигать 6000, а спектрометра с двойной фокусировкой — 80000 и более. [c.842]


    В усовершенствованном методе (с приставкой Фурье) проводится быстрое сканирование в пределах всего интересующего диапазона частот (20 кГц до 10 МГц при В = 1-2 Тл) за 1 мс. Это заставляет все ионы в заданном диапазоне массовых чисел циркулировать в фазе, т.е. поглощать энергию, когда их циклотронная частота совпадает с радиочастотой. Как результат такого поглощения энергии при резонансах на верхней и нижней пластинах ячейки индуцируется импульсный ток, который можно регистрировать, предварительно усилив его электронным усилителем. Величины сигналов обусловлены количеством ионов данной конкретной массы, находящихся в ячейке, циклотронная частота которых совпадает с радиочастотным электрическим полем. Полученные в результате сигналы в измеряемом промежутке представляют собой совокупность импульсов от ионов всех анализируемых масс и, следовательно, содержат всю информацию об образце, которую дает МС рассматриваемого типа. С помощью специального преобразования можно перейти от полученной временной зависимости величин импульсов за определенный отрезок времени к зависимости их ох частоты, которая непосредственно связана с массами ионов. В результате такого преобразования получается традиционный масс-спектр анализируемых ионов. Сама процедура перехода к масс-спектрам называется преобразованием Фурье. В МС-ПФ достигнуто рекордное для масс-спектрометрии разрешение 250000-280000 и более [22], Как следз ет из соотношения (7.13), в МС-ПФ не надо калиброваться по массам с помощью стандартов, т.к. этот метод дает точное значение масс анализируемых ионов. [c.858]

    Сочетание масс-спектрометрии с газожидкостной хроматографией дает превосходный метод анализа смесей. В этом случае требуются очень небольшие количества вещества. Масс-спектрометр используется в качестве детектора в газожидкостной хроматографии, и многочисленные масс-спектры регистрируются по мере поступления компонентов из колонки. Частично разрешенные пики в хроматограмме легко идентифицируют по изменению во времени масс-спектра вещества, соответствующего этому пику. [c.323]

    Масс-спектрометрия низкого разрешения [c.36]

    Первичная обработка данных по интенсивности пиков при низковольтной МС низкого разрешения не отличается от начальной стадии обработки результатов остальных видов МС анализа и состоит в корректировке интенсивностей пиков с учетом изотопной поправки и коэффициентов чувствительности масс-спектрометра к каждому конкретному соединению. [c.37]


    Масс-спектрометрия высокого разрешения [c.39]

    Масс-спектрометрия низкого разрешения (12 эВ) отдельных фракций нефтяных ванадилпорфиринов показала наличие в каждой из них непрерывного набора гомологов нескольких гомологических рядок (рис. 5.6). Анализ масс-спектров фракций порфиринов ряда нефтей позволяет сделать некоторые обобщения. [c.154]

    Как видно, значение фактора г в ряде случаев может быть одинаково для углеводородов с различным числом ароматических ядер, поэтому для группового исследования их методами молекулярной масс-спектрометрии (низкого разрешения) лучше проводить предварительное разделение ароматических углеводородов на группы. [c.150]

    При анализе и исследовании органических веществ, осо-. бенно соединений с высоким молекулярным весом, предпочтение должно быть отдано приборам статического типа. Именно на основе этих приборов были созданы масс-спектрометры высокого разрешения, что повлекло за собой расширение объема получаемой информации и увеличение аналитических возможностей метода. [c.8]

    Использование масс-спектрометров с двойной фокусировкой во много раз увеличило надежность идентификации неизвестных соединений благодаря уменьшению перекрывания спектров компонентов смеси. Кроме того, получение масс-спектров индивидуальных соединений высокого разрешения позволило более детально проследить различные этапы распада молекулярного иона и обнаружить значительное количество ионов, имеющих совершенно непредвиденное строение. Накопление подобных данных приводит к более полной корреляции между строением молекул и их масс-спектрами, а значит и к более тонкой оценке характеристических ионов, используемых при идентификации. Так, например, с помощью масс-спектрометра высокого разрешения исследовались алифатические эфиры муравьиной, уксусной, пропионовой и масляной кислот [218] был идентифицирован состав всех ионов. Основное преимущество высокого разрешения при исследовании [c.125]

    Применение масс-спектрометра высокого разрешения при анализе нефтяных фракций позволило Карлсону и сотрудникам [222] идентифицировать ряд типов углеводородных и неуглеводородных соединений, а также получить качественную картину распределения их по молекулярным массам. [c.127]

    С большим успехом анализ смеси СО и N2 может быть проверен на масс-спектрометре высокого разрешения или иа обычном приборе с использованием различия в форме кривых эффективности ионизации N2 л СО. [c.137]

    По конструкции масс-спектрометры относятся к двум принципиально различным типам низкого и высокого разрешения. В данной книге рассматриваются возможности структурного анализа по масс-спектрам низкого разрешения. Приборы высокого разрешения измеряют массы ионов с точностью до 5—6 значащих цифр, что позволяет непосредственно определять их брутто-формулы. Так, например, на таких спектрометрах можно раздельно детектировать ионы состава [СгНа]" , [СНО и [ЫгН] , имеющие точные массы 29,0391, 29,0027 и 29,0140 а. е. м., тогда как на спектрометрах низкого разрешения все они проявляются одним пиком с массовым числом 29. [c.174]

    Масс-спектрометрия высокого разрешения. Масс-спектрометры обычной конструкции позволяют достигнуть разрешающей способности порядка т/Ат 10 . Такой прибор в состоянии хорошо разрешить пики в интервале [c.296]

    Для решения вопросов структуры мономерных органических соединений чаще всего в настоящее время применяют ИК-спектроскопию и ЯМР-спектроскопию высокого разрешения. Далее следуют масс-спектрометрия, электронная, ЭПР- и раман-спектроскопия. В относительно узкой области соединений с центрами асимметрии применяют методы кругового дихроизма или дисперсии оптического вращения [28—301. [c.407]

    Применимость методов структурного анализа обусловливается чистотой или, вернее, индивидуальностью пробы. Любому структурному анализу должно предшествовать отделение анализируемого вещества в наиболее чистом состоянии от возможных сопутствующих веществ химическим или физическим методом. В исключительных случаях (например, в случае спектроскопии ядерного резонанса высокого разрешения) допускается небольшое содержание примесей в анализируемом образце. Но в любом случае примеси усложняют расшифровку спектра анализируемого вещества. Для спектральных методов структурного анализа необходима небольшая проба анализируемого вещества (табл. 8.15). В случае раман-спектроскопии иногда необходимо брать пробу анализируемого вещества до 10 г. Применяя специальную технику (например, лазеры, микрокюветы, используя методы накопления), можно и для небольших проб веществ получить достаточно отчетливые спектры. Особенным преимуществом спектроскопических методов исследования структуры веществ является возможность получения спектров без разрушения образца (за исключением метода молекулярной масс-спектрометрии). [c.408]


    Приборы низкого разрешения (200/1 или менее), к которым относятся масс-спектрометры устаревших конструкций. [c.368]

    Приборы высокого разрешения (1000/1—100 000/1 или даже выше) к ним относятся большинство масс-спектрометров с двойной фокусировкой конструкций Маттауха — Герцога или Нира — Джонсона и некоторые другие специальные приборы. [c.368]

    В масс-спектрометре высокого разрешения, известном под названием времяпролетного масс-спектрометра, магнитное поле отсутствует, основным элементом является трубка, в которой происходит дрейф ионов (рис. 22.6). После ускоряющего поля ионы имеют одинаковую кинетическую энергию, но разные скорости из-за различия в массах. Они движутся по линейной траектории в трубке, [c.371]

    В масс-спектрометре высокого разрешения используются четыре электростатических поля (квадруполь) (рис. 22.7), тогда как маг- [c.372]

    Мацуда и сотр. (1966) сконструировали и построили специальный масс-спектрограф с очень большой дисперсией и высоким разрешением. Прибор не включен в таблицы, поскольку в нем используется необычная комбинация полей. Пучок проходит сначала цилиндрическое электрическое поле, затем неоднородное магнитное поле с радиальной симметрией и, наконец, однородное магнитное поле. Неоднородное магнитное поле приводит к очень большой дисперсии, которая затем еще увеличивается благодаря большому расстоянию до фотографической пластины. Размеры и конфигурация областей, соответствующих полям, описаны в указанной выше работе. На этом приборе было достигнуто рекордное для масс-спектрометрии разрешение (1200 000), а разрешение порядка 1000 000 является для него рабочим. В настоящее время прибор используется Фукумото и сотр. [c.104]

    Wil ox J.H. - GE J.Sei.and Te hnol., 1975, ,M,16-20 РЖХим, 1976,1Г233. Достижения в органической масс-спектрометрии. Разрешение до 150 ООО. (Успехи в области сочетания ГХ и МС при регистрации, хранении и обработке данных с помощью ЭВМ). [c.129]

    Преимущества масс-спектрометрии высокого разрешения можно продемонстрировать [17] на примере некорректного отнесения пика с т/е = 56 в спектре низкого разрешения Ре[(С2Н5)2НС82]з к атому желе- [c.324]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Недавно высказано предположение, что часть порфиринов в асфальта X Мертвого моря связана в триглицеридную форму с высшими жирными кислотами [799]. Это предположение сделано на основе масс-спектрометрии высокого разрешения и подтверждено ГЖ-хроматографией метиловых эфиров жирных кислот, полученных щелочным гидролизом порфириновых фракций. Однако исследованию подвергался.деметаллированный материал, претерпевший обработку метансульфокислотой (4 ч, 100°С), в связи с чем представляется маловероятным, чтобы триглицериды в этих условиях могли сохраниться. Во всяком случае это предположение нуждается в тщательной проверке. [c.146]

    Применение в исследовании порфириновых концентратов метода масс-спектрометрии низкого разрешения позволило установить, что во всех нефтях УОП представлены набором гомологов пяти рядов, причем наибольшее количество УОП приходится на два основных ряда [51, 319, 819]. Соединения первого ряда (М) соответствуют алкилпорфиринам с различным количеством углеродных атомов в боковых алкильных цепях (схема 5. 1, а). [c.148]

    Эмпирические закономерности, связывающие определенные молекулярные структур(.1 с масс-спектрами, служат основой для расшифровки строения молекул, идентификации органических веществ, качественного и количественного анализа их смесей. При использовании масс-спектрометров с больпю разрешающей способностью (10 000—20 000) анализ смесей углеводородов облегчается, так как имеет место разрешение дублетов (например СО и точные значения масс для расчета дублетов даны на стр. 522—525. [c.521]

    Применение масс-спектрометрии высокого разрешения при анализе фракций нефти и нефтепродуктов обусловлено присутствием в них соединений, имеющих приближенно одинаковую молекулярную массу (например, нонан и нафталин— 128 а. е. м.), но разные брутто-формулы С9Н20 (точное значение 128, 1975) и СюНз (точное значение 128, 1036). Так, при анализе ароматических и полярных фракций нефти встречаются следующие изобарные пары [186]  [c.134]

    Наконец, при отсутствии образца-добавки последний заменяют веществом (суррогатом), которое в процессе измерения ведет себя одинаково или очень похоже на определяемый компонент. Выбор суррогатов требует тщательной методической проработки Наиболее распространены среди них меченью изотопами соединения, например ПХДД, ПХДФ, ПХБ и ПАУ на основе С, применяемые в хромато-масс-спектрометрии высокого разрешения. [c.160]

    Приведенные данные показьшают, что применение масс-спектрометрии в сочетании с хроматофафией дает дополнительные возможности при определении органических суперэкотоксикантов в объектах окружающей среды Благодаря тому, что масс-спектрометр является высокоселективным детектором, разрешение пиков на масс-хроматофаммах, как правшю, заметно лучше, чем на обычных хроматофамма . Кроме того, по масс-хроматофаммам можно получить ответ о природе анализируемых соединений [>го необходимо при идентификации зафязнителей, присутствующих в ульфамалых количествах [c.267]

    Качественный анализ и идентиф икация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод, впервые предложенный Бейноном [214—216] для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладаюишх одинаковой номинальной массой. [c.125]

    Масс-спектрометрия высокого разрешения нашла широкое применение не только для идентификации и изучении структуры отдельных соединений, но и для идентификации типов соединений в сложных смесях и установления распределения этих типов по молекулярным весам. Использование масс-спектрометра при исследовании широких высокомолекулярных нефтяных фракций ограничивается рядом факторов, одним из которых является наложение масс-спектров типов, отличающихся по 2 (в формуле СпНзга+г) ИЗ 14 единиц. Это наложение обусловлено равенством номинальных масс 1С—12Н. Так, например, ион нонана С9Н20 (общая формула С Игп+г) и нафталина СюНа(СпН2п 12) обладают номинальной массой 128, в результате чего их молекулярные пики на приборе с малой разрешающей силой перекрываются. Однако точные значения массовых чисел подобных ионов отличны друг от друга ДМ дублета Н 2—равно 0,0939. Ввиду этого на масс-спектрометре с высоким разрешением указанным выше ионам будут соответствовать 2 пика, что позволит установить присутствие обоих веществ. Естественно, аналогичная картина наблюдается и в осколочных ионах. При переходе к неуглеводородным соединениям расшифровка осложняется из-за наложения масс-спектров, вследствие наличия одного или нескольких гетероатомов. В этом случае установление распределения по молекулярным массам с помощью обычного масс-спектрометра часто невозможно. [c.126]

    Такая техника масс-фрагментографии возникла еще в конце 60-х годов практически сразу же после появления первых моделей серийных хромато-масс-спектрометров. Другой прием, сформировавшийся лишь в начале 80-х годов, — масс-фрагментография высокого разрешения — позволяет опознавать в сложных смесч < только соединения, содержащие интересующие исследователя элементы, но требует разрешения прибора не менее Зч-5-IO . В этом случае селективность детектирования обусловлена не наличием характеристических пиков в спектрах наследуемых [c.202]

    Молекулярную формулу можно получить из масс-спектра несколькими путями. С помощью спектрометра высокого разрешения, измеряющего mie с точностью до четырех знаков после запятой, можно найти точную молекулярную массу и, пользуясь соответствующими таблицами, определить молекулярную формулу вещества. Например, массовые числа для Na и G2H4 одинаковы (28,0), однако в первом случае точная масса составляет 28,0061, а во втором —28,0313. Эти величины легко различить с помощью масс-спектрометрии высокого разрешения. [c.524]

    Иногда под М. а. понимают только установление строения хим. соединений. При этом сначала определяют его эмпирич. ф-лу по данным качеств, и количеств, элементного анализа. Эмпирич. ф-лу и мол. массу соединения можно также определить масс-спектрометрически, напр, с помощью масс-спектрометрии высокого разрешения (погрешности измерения масс ионов 10 " -10 атомных едшшц). Спектроскопия в видимой и УФ областях позволяет установить класс (тип) соединения, наличие в его молекуле хромс -форов. С помощью ИК спектроскопии осуществляют функцион. анализ в-в. Большой объем информации о строении хим. соединения дает спектроскопия ЯМР и масс-спектро-метрия. Совместное употребление данных ЯМР, оптических и масс-спектров в подавляющем большинстве случаев позволяет однозначно установить строение хим. соединения. Дополнительно используют рентгеноструктурный анализ, рентгеноэлектронную спектроскопию и др. методы. Автоматизир. системы установления строения орг. в-в включают помимо набора спектральных, хроматографич. и комбинир. приборов также ЭВМ, банки спектральных данных и пакеты программ для ЭВМ, позволяющие обрабатывать полученные спектры, сравнивать их с данными банков, устанавливать и использовать спектрально-структурные корреляции и т. п. [c.120]


Смотреть страницы где упоминается термин Масс-спектрометрия разрешение: [c.121]    [c.199]    [c.265]    [c.265]    [c.266]    [c.269]    [c.125]    [c.296]    [c.40]    [c.170]    [c.711]    [c.367]    [c.367]    [c.371]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Возникновение метода. Масс-спектрометрия низкого разрешения

Использование ЭВМ в масс-спектрометрии высокого разрешения для исследования органических соединений

Масс-спектрометр

Масс-спектрометр высокого разрешения

Масс-спектрометрия

Масс-спектрометрия вторичных ионов разрешение по глубине

Масс-спектрометрия высокого разрешения

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия низкого разрешения

Разрешение масс-спектрометра

Разрешение масс-спектрометра Расплавы жидкокристаллические



© 2024 chem21.info Реклама на сайте