Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометры магнитные

    Разработана установка (рис. 17), с помощью которой можно одновременно записывать кривые ДТА, ТГ и осуществлять анализ выделяющейся газовой фазы с помощью масс-спектрометра типа квадрупольного масс-фильтра, который упрощает измерение по сравнению с обычным масс-спектрометром магнитного поля. [c.35]

    В масс-спектрометре высокого разрешения, известном под названием времяпролетного масс-спектрометра, магнитное поле отсутствует, основным элементом является трубка, в которой происходит дрейф ионов (рис. 22.6). После ускоряющего поля ионы имеют одинаковую кинетическую энергию, но разные скорости из-за различия в массах. Они движутся по линейной траектории в трубке, [c.371]


    И СВОЙСТВ молекул, а также использование термодинамики как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и приме-5" нение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-химики добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Химические реакции в предпламенной зоне. Химические реакции в пламени и предпламенной зоне протекают с очень большой скоростью, что крайне затрудняет их изучение. О характере химических реакций можно судить путем идентифицирования стабильных продуктов, образующихся в результате этих реакций. Для таких исследований были разработаны техника зондирования пламени пробоотборниками, а также техника бесконтактного оптического зондирования пламен. Анализ проб проводили с использованием современных высокочувствительных физических методов — масс-спектрометрии, хроматографии, лазерного магнитного резонанса и др. Таким образом была получена достаточно надежная информация о химических реакциях, протекающих в предпламенной зоне и в пламени. [c.120]

Рис. 6. Схема масс-спектрометра фирмы Дженерал Электрик, а — ионизационная камера в увеличенном масштабе, 1 — напряжение, ускоряющее ионы, 2500 2 — ионизационная камера з—ионная линза 4, — коллиматорные щели 4 — магнитное поле, расположенное в плоскости чертежа — вспомогательный коллектор 7 — щель коллектора I — вспомогательный усилитель 9 — главная коллекторная плоскость 10 — главный усилитель 11 регистрирующее устройство 12 — нить 13 — ловушка для электронов. Рис. 6. <a href="/info/679973">Схема масс-спектрометра</a> <a href="/info/929560">фирмы Дженерал</a> Электрик, а — <a href="/info/39662">ионизационная камера</a> в <a href="/info/147284">увеличенном масштабе</a>, 1 — напряжение, ускоряющее ионы, 2500 2 — <a href="/info/39662">ионизационная камера</a> з—ионная линза 4, — <a href="/info/1333693">коллиматорные щели</a> 4 — <a href="/info/18863">магнитное поле</a>, расположенное в плоскости чертежа — вспомогательный коллектор 7 — щель коллектора I — <a href="/info/904402">вспомогательный усилитель</a> 9 — главная коллекторная плоскость 10 — <a href="/info/135327">главный усилитель</a> 11 <a href="/info/1158770">регистрирующее устройство</a> 12 — нить 13 — ловушка для электронов.

    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]

    Спектрометр ИЦР, выпускаемый в настоящее время промышленностью, представляет собой по существу масс-спектрометр, в котором используется метод регистрации сигнала спектрометров магнитного резонанса. Как и в масс-спектроскопии, в этом методе генерируется положительный ион с массой т и зарядом е. В однородном магнитном поле Н этот ион ускоряется и движется по круговой орбите, плоскость которой перпендикулярна направлению магнитного поля. Движение иона по этой орбите описывается циклотронной частотой выражаемой как [c.329]

    Спектроскопия рассеяния ионов Масс-спектрометрия вторичных ионов (МСВИ) Магнитная восприимчивость. [c.12]

    МАГНИТНЫЕ И ЯДЕРНЫЕ МЕТОДЫ АНАЛИЗА Масс-спектрометрия [c.521]

    В последние годы значительные успехи в области исследования строения углеводородов были получены при помощи ряда физических методов исследования. Особенно большую роль сыграли такие методы, как ядерно-магнитный резонанс, молекулярная и масс-спектрометрия, газовая хроматография и термическая диффузия. Однако, кроме физических методов исследования, не меньшее значение имеют и химические методы, прогресс которых в последнее время, может быть, был и не столь внешне блестящ, но все же весьма существен. Бесполезно, на наш взгляд, определять преимущества тех или иных методов исследования, так как только разумное их совместное использование может привести к успеху, особенно в анализе столь сложных, многокомпонентных смесей, какими являются насыщенные циклические углеводороды нефти. Характерно, что в одной из последних больших монографий, посвященных установлению структуры органических соединений, уделяется одинаковое внимание как физическим, так и химическим методам исследования [Ц. [c.312]

    Масс-спектрометрия и ядерный магнитный резонанс [c.229]

    В масс-спектрометре органическое соединение (или их смесь) переводится в газообразное состояние, затем подвергается действию электронного (фотонного) удара или сильного электриче-ческого поля, в результате чего удаляется электрон с одной из молекулярных орбиталей и образуется положительно заряженный молекулярный ион. Обладая избыточной энергией, полученной, например, от ударяющего электрона (имеющего, как правило, энергию 50—100.эВ), этот нон распадается на заряженные и нейтральные осколки, первые из которых далее в магнитном (или ином) анализаторе делятся в зависимости от их массы (точнее, в зависимости от отношения массы частицы к ее заряду, последний обычно равен единице) и далее регистрируются. Массовое число, соответствующее исходному (молекулярному) иону и осколочным ионам, является точной и однозначной характеристикой исходной молекулы и ее фрагментов. Образование набора тех или иных осколочных ионов с данной распространенностью (концентрацией) однозначно характеризует структуру исходной молекулы, так что даже очень близкие по структуре соединения (например, изомерные углеводороды) дают свои неповторимые масс-спектры. [c.131]

    Используя спектроскопические методы исследования, автор рассматривает вопросы идентификации спектров свободных радикалов, образующихся при механических воздействиях. Для анализа структуры полимеров и явлений, происходящих в них под нагрузкой, применяются хорошо зарекомендовавшие себя методы электронного парамагнитного и ядерного магнитного резонансов, современной голографии, а также электронная микроскопия, масс-спектрометрия и малоугловое рентгеновское рассеяние. Совокупное применение этих методов показало, что механическое разрушение полимеров происходит при совместном действии внешней силы и теплового движения. [c.5]


    Наряду с развитием приборостроения в области классической масс-спектрометрии , начиная с 1950 г., предложен ряд оригинальных методов разделения ионов и осуществлено создание большого числа типов приборов, относимых обычно к так называемым динамическим масс-спектрометрам. В динамическом масс-спектрометре с циклоидальной фокусировкой применяются скрещенные электрическое и магнитное поля. Развертка спектра осуществляется путем изменения величины одного из полей [7]. [c.7]

    В магнитном время-пролетном масс-спектрометре ионы движутся в постоянном магнитном поле по круговой траектории. В этом спектрометре ионный пучок проходит импульсами с частотой 300 кгц [10]. Ускоряющее электрическое поле падает до нуля раньше, чем ионы (кроме самых легких) выйдут из источника, так что все тяжелые ионы получают равные импульсы, и поэтому в магнитном поле движутся по одной и той же траектории. Так как ионы описывают полную окружность, они фокусируются, давая ионно-оптическое изображение своего пространственного распределения в ионном источнике. Другой тип масс-спектрометра по времени пролета представляет собой прибор, в котором ионы двигаются от источника к коллектору по линейной траектории при отсутствии магнитного поля. В приборе измеряется время дрейфа ионов с известной энергией по длинной ограниченной трубке. Интервал времени между поступлением масс на коллектор [c.7]

    Процессы образования молекулярных и осколочных ионов могут быть названы первичными процессами протекающими в ионном источнике масс-спектрометра. К их числу следует отнести также образование метастабильных ионов (39, 40], возникающих в том случае, когда процесс диссоциации протекает за время, несколько большее, чем время одного колебания атома в молекуле, равное 10 —Ю " сек. Так, если продолжительность существования образовавшихся ионов составляет 1 мксек, то этого достаточно для вытягивания их из ионного источника и приобретения ими ускорения. Однако такие ионы не успевают пройти магнитный анализатор без разложения и распадаются с отщеплением нейтральных частиц, а в масс-спектре появляются ложные пики. Условием для их обнаружения является повышенная концентрация ионов в какой-либо точке ионного потока. [c.23]

    Наиболее известным и щироко используемым масс-спектрометром является прибор с магнитным отклонением. Разделение по массам осуществляется при прохождении пучка практически моноэнергетических ионов через область магнитного поля, силовые линии которого перпендикулярны траектории ионов. [c.31]

    Масс-спектры состоят из линий, соответствующих осколкам молекул с определенным отношением их массы к заряду. Эти осколки образуются в ионизационной камере масс-спектрометра в результате действия электронного удара. Затем ионизированные осколки и ионы ускоряются в магнитном поле, причем величина отклонения пучка ионов зависит от отношения массы осколка или [c.122]

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]

    Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61 11.27]. [c.324]

    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Из других ранних конструкций масс-спектрографов следует отметить приборы Демпстера [460, 461] и Бейнбриджа и Джордана [112, 113]. Демпстер использовал в приборе отклонение на 180° в магнитном поле, примененное им в своем первом масс-спектрометре. Магнитному полю предшествовало 90-градусное радиальное электростатическое поле. Для осуществления двойной фокусировки отношение ге/г должно было быть равным 0,873. Другие параметры, которые должны быть выдержаны для осуществления фокусировки, приведены в масштабе на рис. 8. Дакворт [532, 533] построил прибор конструкции Демпстера с разрешающей способностью 7000 при ширине входной щели [c.26]

    Масс-спектроскопия основана на разделении заряженных частиц переменной массы способами электрического и магнитного полей. Основными частями масс-спектрометра являются ионизационная камера (ионы в ней образуются при электронной бомбардировке газообразных веществ), электрический потенциал для того, чтобы ускорить движение ионов, и магнитное поле, которое индуцирует угловое отклонение. Если изменить силу либо электрического, либо магнитного полей, то ионы могут быть соответственно разделены и собраны на основе отношения массы к заряду. Углеводороды ионизируют для того, чтобы получить определенные обрывы цепей. Так как такие обрывы характерны для углеводородного ряда, то поэтому возможны типовые анализы узкокипящих фракций в газообразных нефтепродуктах, смазочных маслах и парафинах однако [219—220] могут встречаться и смешанные структуры [222]. Необходимо использовать стандарты для калибровки спектрометра. [c.191]

    Электроны как отдельные частицы исследовались физиками, занимавшимися изучением электрических разрядов в разреженных 1азах при больших напряжениях. Катодные лучи представляют собой пучок электронов, оторванных от атомов газа. Дж. Дж. Томсон, изучая отклонение катодных лучей в электрическом и магнитном полях показал, что эти лучи образованы отрицательно заряженными частицами, и измерил отношение заряда этих частиц к их массе. Милликен завершил эти исследования, поставив опыт с капельками масла, благодаря которому удалось измерить заряд электрона. В сочетании с результатами Фарадея это позволило вычислить число Авогадро, т. е. число электронов, составляющих 1 Г заряда, или число частиц в моле любого вещества. Масс-спектрометр, потомок газоразрядных трубок Крукса и Томсона, представляет собой современный акаля тический прибор, в котором измеряется отношение заряда к массе любой атомной или молекулярной частицы, несущей на себе электрический заряд. [c.54]

    Дж. Дж. Томсон вьгаислил отношение заряда к массе электрона, наблюдая отклонение пучка электронов электрическим и магнитным полями. Современным развитием прибора Томсона является а) сцинтил-ляционный счетчик, б) масс-спектрометр, в) счетчик Гейгера, г) инфракрасный спектрометр. [c.583]

    Простейший метод определения структуры химических молекул сводится к непосредственной проверке структуры с помощью рентгенолучевой кристаллографии. Однако это не всегда удается осуществить, поэтому приходится прибегать к другим методам, включающим анализ с помощью инфракрасного и ультрафиолетового излучений, хроматографии, ядерного магнитного резонанса и масс-спектрометрии. Обычно структурный анализ включает следующие этапы 1) после получения образца используется один из перечисленных выше методов для проверки структуры 2) данные проверки интерпретируются с целью выработки ряда гипотез, касающихся структуры функциональных групп или более слож- [c.49]

    Среди современных методов исследования углеводородов необходимо еще отметить масс-спектрометрию. Под влиянием интенсивной бомбардировки ионами, например положительными, молекула исследуемого вещества разбивается на частицы, заря-жегпше противоположными зарядами. Если эти частицы пропускать через магнитное поле, то они отклоняются от прямого пути, и при одинаковом заряде их скорость пропорциональна их массам. Пр51 помощи масс-спектрометра (рис. 19) ионы группируютсл в серии спектров одинаковой массы число частиц и скорость движения этих спектров регист])ируют прибором. Количества каждой массы рассчитывают по спектрограммам (см. рис. 19). Масс-спектры неодинаковы но только у молекул различного молекулярного веса, но и у изомеров. Метод применяется преимущественно для исследования газов и паров легкокипящих веществ, но был использован также и для изучения более высокомолекулярных углеводородов [2, т. I]. [c.96]

    Химический состав. Сутествуют различные приемы и метода изучения состава жидких парафинов ректификация. дробная кристаллизация, комплексообразование. адсорбция на цеолитах и различных адсорбентах, хроматография, масс-спектрометрия, ядерный магнитный резонанс, а также различные расчетные методы. Химический состав жидких парафинов начинают изучать с разделения их ректи. .икацией на узкие фракции, затем определяют групповое состав фракции. Из этих фракция выделяют тем или иным методом отдельные классы углеводородов, после чего изучают индивидуальный углеводородный состав соединении и их структуру, rio можно выделять отдельные классы углеводородов, а также определять их индивидуальный состав непосредственно из исследуемого парафина. Разработан ряд методов определения содержания 0 парафинах углеводородов различных классов, а также строения этих углеводородов [17].  [c.16]

    Задачи стереохилшческого анализа — это определение структуры химических молекул сложных соединений по экспериментальным данным, полученным с использованием рентгено-лучевой кристаллографии, инфракрасного и ультрафиолетового излучений, хроматографии, масс-спектрометрии, ядерного магнитного резонанса [1, [c.33]

    Масс-спектрометры по своему устройству могут быть разделены на статические и динамические. В статических приборах используются медленно изменяемые (для осуществления развертки по массам) постоянные магнитные и электрические поля, образующие ионно-оптическую систему, управляющую движением в приборе пучков ионизированных частиц. В динамических приборах используются высокочастотные электрические и, иногда, вспомогательные постоянные магнитные поля. Статические масс-спектрометры брлее универсальны, они обладают большой разрешающей способностью и чувствительностью. Динамические приборы меньше по весу и габаритам и обладают высоким быстродействием они удобны для анализа сред быстро изменяющегося состава, например, при процессах горения. [c.604]

    С другой стороны, спектры ядерного магнитного резонанса протонов тяжёлых фракций коксования не содержат пиков, характерных для протонов, присоединенных непосредственно к атомам углерода двойной связи, несмотря на достаточно большие йодные числа и на относительно большой объем сульфируемой части образца. Таким образом, методика, сочетающая метод ЯМР и масс-спектрометрию для анализа количества олефиновых углеводородов в тяжёлых фракциях вторичного цроисхоадения не может быть создана ввиду отсутствия пиков олефиновых протонов в спектрах ЯМР этих цродуктов. [c.18]

    Первый масс-спектрометр был сконструирован Демпсте-ром Б 1920 г. [3]. В этом приборе применен источник ионов, разработанный Ниром, в котором положительные ионы возникали в результате бомбардировки молекул электронами. Этот тип источника обеспечивал образование ионов с примерно одинаковой небольшой кинетической энергией. Ускорение ионов происходило за счет большой разности потенциалов ионы проходили через щель. Таким образом, получался пучок, в котором все ионы обладали близкой по величине кинетической энергией. Пучок ионов отклонялся на 180° магнитным полем, расположенным перпендикулярно направлению движения ионов, и отклоненные ионы фокусировались на щель, через которую могли проходить только ионы с определенным отношением массы к заряду. Масс-спектрометры с таким разделением ионов относят к приборам статического типа (рис. 1). [c.6]

    Масс-спектрометр с двойной фокусировкой обеспечивает фокусировку но направлению и скоростям с помощью электрического и магнитного полей. Существуют различные способы комбипнроваиия магнитного и электрического полей в простейшей из этих комбинаций магнитное поле следует за электрическим. Введение электрического поля улучшает фокусировку изображения, устраняя скоростные аберрации первого порядка в ряде случаев и аберрации второго порядка могут быть сведены к нулю [51—53]. Вторым способом достижения двойной фокусировки является совмещение электрического и магнитного полей (масс-спектрометр с совме-н1енными полями) [54], третьим — сочетание наложенных однородных электрического и магнитного полей с объектом и изображением внутри поля (циклоидальный масс-спектрометр с совме1цен1п>1ми полями) [55]. [c.32]

    Большое влияние на стабильность распределения интенсивностей в масс-спектре оказывают адсорбционные эффекты. Изменение интенсивности пиков в процессе съемки может быть вызвано также разложением анализируемого вещества в баллоне напуска, на пути к источнику и на раскаленном катоде. Некоторые изменения распределения интенсивностей в масс-спектрах имеют место вследствие дискриминации, связанной с типом развертки масс-спектры, снятые при изменении ускоряющего напряжения, могут значительно отличаться от масс-спектров, полученных с помощью магнитной развертки, что затрудняет их сопоставление. Спектры одних и тех же соединений, снятые на 60-, 90- и 180-градусных масс-спектрометрах, отличаются друг от друга [60]. При этом распределение интенсивностей ионов в масс-спектрах, снятых на раз личных приборах, изменяется различно в зависимости от типа исследуемогй соединения. [c.132]

    Группа лабораторий в Соедипегшых Штатах [258] и в Европе [259] провела совместное исследование стандартного образца, содержащего углеводороды С —С/ позволившее установить точность анализа. При этом достигаемая точность ог[ределений ие зависела от того, проводились ли они на приборе с 180- или 90-градусным секторным магнитным нолем. Было установлено [260], что масс-спектрометр в общем случае характеризуется лучшей воспроизводимостью измерений по [c.134]

    Масс-спектры состоят из линий, соответствующих осколкам молекул с определенным отношением их массы к заряду. Эти осколки образуются в ионизационной камере масс-спектрометра в результате действия электронного удара. Затем ионизированные осколки и ионы ускоряются в. магнитном поле, причем угол отклонения пучка ионов зависит от отношения массы осколка или иона М к его заряду е. Ионные токи, обусловленные каждым пучком ионов, пос- ле усиления регистрируются самописцем. Положение линий на шкале масс и их относительная интенсивность являются важными характеристиками масс-спектра данного соединения. Масс-спектры изомеров различаются по относительной интенсивности линий. Относительный спектр масс хорошо воспроизводится. Все это обуслов- ливает успешное применение масс-спектров для однозначной идентификации соединений, в том числе и изомеров. [c.196]

    Наряду с рассмотренными методами ИК спектроскопии и масс-спектрометрии идентификация хроматографически выделенных из смеси веществ может быть выполнена и другими методами. К ним относятся метод ядерного магнитного резонанса, кулонометрия, полярография, пламенная фотометрия, спектроскопия в ультрафиолетовой и видимой областях и, наконец, химические методы анализа, преимущественно микрометоды. [c.196]

    Физические методы органической химии. Сборник под ред. А. Вайсбергера. М -датинлит. Том I, 1950,(532 стр.). Рассмотрены главным образом методы определения физических свойств ра 1личных веществ температуры плавления, температуры кипения, растворимости и др. Том II, 1952, (587 стр.). Описаны методы регулирования и измерения температуры, колориметрия, микроскопия и др, Том III, 1954, (216 стр.). Диполь-ный момент, масс-спектрометрия, определение радиоактивности. Том IV, 1955, (747 стр.). В этом томе рассмотрены главным образом физико-химические методы анализа спектроскопия и сиектрофотометрия, поляриметрия, полярография, магнитная восприимчивость, калориметрия и др. [c.486]


Смотреть страницы где упоминается термин Масс-спектрометры магнитные: [c.338]    [c.50]    [c.316]    [c.252]    [c.448]    [c.265]    [c.266]    [c.30]    [c.32]   
Физические методы исследования в химии 1987 (1987) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте