Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

белок белок фактор

    Белки, их химические и физико-химические свойства. Методы выделения и очистки белков классические —диализ, высаживание из растворов современные — распределительное и ионообменное хроматографирование, хроматографирование па молекулярных ситах, электрофорез. Индивидуальность белков. Цветные реакции белков биуретовая, ксантопротеиновая, нингидринная, реакция Миллона. Первичная, вторичная, третичная и четвертичная структуры белков, факторы, опре- [c.248]


    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]

    Полисахариды, наряду с белками и нуклеиновыми кислотами, являются необходимыми компонентами любой живой клетки. Если в области изучения биосинтеза и биологических функций нуклеиновых кислот и белка достигнуты в последнее время значительные успехи, молекулярная биология полисахаридов остается по существу белым пятном. Между тем многие проблемы иммунохимии, межклеточных взаимодействий, оплодотворения, клеточной дифференцировки, по-видимому, не могут быть удовлетворительно разрешены без понимания факторов, определяющих биологическую специфичность полисахаридов. Важным звеном, необходимым при обсуждении этих факторов, являются сведения о макромолекулярной структуре полисахаридов и других углеводсодержащих биополимеров. Между тем это направление исследований, к сожалению, развивается пока крайне слабо. Следует отметить, что изучение макромолекулярной структуры полисахаридов принципиально сложнее, чем в случае белков и нуклеиновых кислот. Это связано с огромным разнообразием возможных типов связей между мономерными единицами и существованием разветвлений, что ставит качественно новые задачи при определе- [c.635]

Рис. 6.6. Протеолитическое расщепление химерного белка фактором свертывания крови Х . Фактор Х узнает аминокислотную последовательность, разделяющую два компонента химерного белка. После расщепления высвобождается функциональный белок, кодируемый клонированным геном. Рис. 6.6. <a href="/info/1034549">Протеолитическое расщепление</a> <a href="/info/200689">химерного белка</a> <a href="/info/187372">фактором свертывания крови</a> Х . Фактор Х узнает <a href="/info/31042">аминокислотную последовательность</a>, разделяющую два компонента <a href="/info/200689">химерного белка</a>. После расщепления высвобождается <a href="/info/1534595">функциональный белок</a>, кодируемый клонированным геном.

    Гр. Следовательно, они в несколько раз более радио-устойчивы, чем стволовые кроветворные клетки. При дозах 10—100 Гр решающим в течении пострадиационного процесса является поражение кишечного эпителия. Основная причина его гибели состоит в том, что в условиях денудации слизистой оболочки тонкого кишечника происходит потеря жидкости, электролитов и белков, сопровождаемая микробной инвазией и токсемией, ведущими к септическому шоку и недостаточности кровообращения. Радиационные изменения эпителиального слоя желудка, толстого кишечника и прямой кишки примерно такие же, но выражены значительно меньше. Хотя решающим патогенетическим фактором данного синдрома является денудация слизистой оболочки кишечника, следует иметь в виду, что параллельно с этим постепенно развиваются нарушения кроветворной функции. Одновременное тяжелое необратимое поражение обеих критических систем организма при облучении в дозах 10—100 Гр приводит к быстрой и неизбежной гибели. [c.19]

    Некоторые факторы разрушают вторичную и третичную структуры белков — происходит так называемая денатурация белка. Сущность денатурации белка сводится к разрушению связей, обусловливающих вторичную и третичную структуры молекулы (водородных, солевых и других мостиков). А это приводит к дезориентации конфигурации белковой молекулы (рис. 18.1, б). Реагенты и условия, вызывающие денатурацию белков, весьма различны действие сильных кислот и щелочей, этилового спирта, солей тяжелых металлов, радиация, нагревание, сильное встряхивание и др. [c.353]

    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    Как впервые указал Лайнус Полинг, одним из важных принципов формирования структуры белков является образование как можно большего числа водородных связей между группами С = 0 и N—И основной цепи. Простым примером может служить слой уложенных рядом вытянутых цепей (ф=о1з=180°), между которыми образованы водородные связн. Подобную структуру имеет полиглицин — ее до некоторой степени иллюстрирует рис. 2-6 (вверху слева). Обратите внимание, что на этом рисунке соседние цепи идут в противоположных направлениях, отсюда и название — антипараллельная (3-структура. Помимо того что антипараллельность цепей создает наиболее благоприятные условия для образования водородных связей между цепями, она еще способствует тому, чтобы цепь повернула и шла назад вдоль самой себя. Это очень важный фактор при формировании клеточных структур. [c.89]

    Рибосома начинает читать мРНК со строго определенной точки ее последовательности, а именно с той, с которой начинается ее кодирующая часть. Как уже отмечалось, эта точка вовсе не есть самый крайний 5 -концевой нуклеотид мРНК, а как правило, расположена на определенном удалении, иногда значительном, от начала полинуклеотидной цепи. Рибосома должна каким-то образом узнать начальную точку считывания, связаться с ней, и только тогда начать трансляцию. Комплекс событий, обеспечивающих процесс начала трансляции, обозначается как стадия инициации. В инициации принимают участие специальный инициаторный кодон, инициаторная тРНК и белки, называемые факторами инициации. [c.56]

    Рестриктирующие эндонуклеазы, детерминируемые хромосомой Е. соИ, — это крупные белки с мол. весом порядка 300 000—400 000, состоящие из полипептидных цепей трех типов. Они явно связываются со специфическими участками и неспецифически разрушают прилегающие к ним участки. Для их действия необходимо наличие АТР, ионов Mg2+ и S-аденозилметионина. Уникальная особенность этих белков состоит в способности вызывать гидролиз необычно больших количеств АТР [215]. Значение всех этих свойств рестриктирующих ферментов остается до сих пор неясным. Второй класс рестриктирующих ферментов состоит из относительно небольших мономерных или димерных белков с мол. весом 50 000—100 000. Местом атаки этих ферментов служат, как правило, нуклеотидные последовательности с локальной симметрией второго порядка [217]. Так, например, для двух рестриктирующих эндонуклеаз, детерминируемых ДНК плазмиды R-фактора Е. соН, и рестриктирующего фермента Hemophilus influenzae были идентифицированы следующие участки расщепления (в приведенной ниже схеме стрелками показаны места расщепления, звездочками — места метилирования, а точками — локальная ось симметрии второго порядка)  [c.279]


    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    Транскрипция генов 5S РНК и тРНК осуществляется с участием выделенных и очищенных белков—факторов транскрипции-Особенно хорошо изучен специфический фактор транскрипции TF П1 А (англ. trans ription fa tor) 55-генов. Фактор представляет собой полипептид с Л1,=40 ООО, он связывается с внутренним контролирующим элементом 55-гена. Вслед за ним связываются два других белка и присоединяется РНК-полимераза. Одна из особенностей белка TF П1 А состоит в том, что он специфически связывается не только с ДНК, но и с 5S РНК. Поэтому при большой кон- [c.210]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    Этот выбор диктуется в основном стремлением сохранить нативность очищаемого белка и максимально уменьшить неспецифическую сорбцию других компонентов исходной смеси. Само аффинное связывание вещества с лигандом, как правило, от состава буфера я ид-кой фазы зависит мало. Интересами сохранения нативности и растворимости белка диктуются выбор pH, наличие соли, а иногда (например, для белков мебран) введение в буфер добавок органических растворителей или детергентов. Все это определяется известными свойствами данного белка. Неспецифическая сорбция примесей, в частности балластных белков, на матрице и спейсерах происходит за счет тех же самых сил (притяжения разноименно заряженных групп, водородных связей и гидрофобных взаимодействий), которые обусловливают и биоспецифическое снизывание вещества с лигандом. Избирательность и прочность аффинной связи обусловлены кооперативным действием различных сил в области связывания, где они дополняют друг друга. Благодаря такой кооперации имеется возможность ввести в буфер факторы, ослабляющие действие сил какого-либо типа или даже всех их одновременно, но в такой степени, что биоспецифическое аффинное взаимодействие будет ослаблено лишь частично, в то время как неспецифическую сорбцию удастся подавить практически полностью. [c.404]

    Создать технологию и оборудование производства уникального белка молока — фактора роста кровеносных сосудов ангиогенина из молочного сырья [c.1355]

    П экзотоксина А Pseudomonas. Затем экзотокси-новая часть химерного белка инактивирует фактор элонгации EF-2, участвующий в синтезе белка. Это препятствует дальнейшему синтезу белка, что в конце концов приводит к гибели клетки. Таким образом, СВ4-домен помечает ВИЧ-пораженные клетки, а экзотоксин выступает в роли наемного убийцы . [c.223]

    В процессе прикрепления рРНК к рибосоме участвуют специальные белки - факторы элонгации, обозначаемые ЕР, и гидролизуется ГТФ с выделением энергии. [c.58]

    Когда рибосома достигнет терминирующего кодона мРНК, синтез полипептида прекращается. В присутствии терминирующего кодона рибосома не связывает какой-либо аминоацил-тРНК, а вместо них в дело вступают специальные белки, называемые факторами терминации. Под их действием синтезированный полипептид освобождается из рибосомы. Эта стадия называется терминацией трансляции. После терминации рибосома может либо сойти с мРНК, либо продолжать скользить вдоль нее, не транслируя. [c.56]

    Транслокация катализируется довольно крупным белком, называемым фактором элонгации G (EF-G) у прокариот или фактором элонгации 2 (EF-2) у эукариот. Молекулярная масса EF-G —около 80000 он представляет собой одну полипептидную цепь длиной 701 аминокислотный остаток (в случае Е. соИ), образующую несколько глобулярных доменов. Эукариотический EF-2 несколько крупнее EF-G его молекулярная масса у млекопитающих и ряда других животных — около 95000. EF-G (или, соответственно, EF-2) взаимодействует с ГТФ и с рибосомой. При этом взаимодействии наводится ГТФазная активность, и ГТФ расщепляется до ГДФ и ортофосфата. При взаимодействии (комплексообразовании) EF-G и ГТФ с претранслока-ционной рибосомой происходит быстрая транслокация, а EF-G, ГДФ и ортофосфат освобождаются из комплекса с рибосомой. [c.198]

    Таким образом, наши представления о взаимодействиях между белками и нуклеиновыми кислотами пока еще очень ограниченны. Как было отмечено, важную роль в этих взаимодействиях могут играть -структуры [206—208]. Примеры рибосомальных белков и фактора элонгации Tu GDP показывают, что некоторь е нуклеопротеиды имеют весьма своеобразную структуру. [c.271]

    Как объясняет Марголис [263], действие кремнезема обусловливается адсорбцией и денатурацией глобулярного белка— фактора Хагемана. Было обнаружено, что степень денатурации возрастала с увеличением размеров частиц коллоидного кремнезема, который добавлялся в систему. Предложенный механизм заключался в том, что на достаточно больших по размеру частицах или же на плоских поверхностях кремнезема при формировании монослоев молекула белка растягивается под действием адсорбционных сил. Но в том случае, когда размер частиц кремнезема очень мал, молекулярные сегменты белка, не раскрываясь, присоединяются сразу к различным кремнеземным частицам. Для пояснения рассматриваемых эффектов приведен рис. 7.6, аналогичный рисунку в работе Марголиса. В том случае, когда молекула белка адсорбируется на большей по размеру частице кремнезема или на образованном из малень-ших частиц большом агрегате, цепь молекулы белка растягивается, при этом некоторое число внутренних водородных связей, удерживавших молекулу белка в какой-либо специфической конформации, оказываются разорванными. На одиночных частицах небольшого размера подобного растяжения молекулы не происходит [264—266]. [c.1057]

    Исследование функционирования рибосом — актуальная задача. Для работы рибосом необходимо присутствие в них специальных белков — трансферных факторов (см. [87]). Известны три фракции трансферных факторов G-фактор, зависимый от ГТФ, Тс — стабильный фактор и Тп — нестабильный фактор [101]. В присутствии G-фактора появляется ГТФ-азная активность. Трансферные факторы объединяются с рибосомой в присутствии двухвалентных катионов. Структура и роль трансфер  [c.580]

    Секреция гетерологичных белков, синтезируемых S. erevisiae В дрожжевых клетках гликозилируются только секретируемые белки, поэтому для получения рекомбинантных белков, которые для перехода в активную форму должны подвергнуться N-или 0-гликозилированию, необходимо использовать системы секреции. Для этого перед кДНК, которая кодирует интересующий исследователя белок, нужно поместить так называемый пре-про-а-фактор - лидерную (сигнальную) последовательность гена фактора спаривания дрожжей. Синтезируемый рекомбинантный белок сможет в этом случае эффективно секретироваться дрожжами. [c.139]

    Если не принимать решительных мер для поддержания чистоты на таких заводах, продукция их — как масло, так и казеин — окажется никуда не годной особенно это относится к маслу, как продукту пищевому и весьма ценному, часть которого экспортируется за границу. Масло крайне чувствительно к запахам, а белки при разложении образуют дурно пахнущие вещества. Вот почему на маслозаводах так следят за чистотой, и у работников маслозаводов выработалось правило вести процесс аккуратно. Это правило легко можно было бы соблюдать и при всех операциях с казеином, что на самом деле не всегда встречается. Казеиноделы не отдают себе должного отчета в чувствительности казеина к внешним влияниям, к влияниям ферментов, щелочей и кислот, а пренебрежение этими факторами ведет к получению низкосортной продукции. [c.73]


Смотреть страницы где упоминается термин белок белок фактор : [c.23]    [c.201]    [c.620]    [c.622]    [c.19]    [c.178]    [c.470]    [c.477]    [c.58]    [c.57]    [c.142]    [c.160]    [c.271]    [c.201]    [c.224]    [c.546]    [c.489]    [c.529]    [c.573]    [c.46]    [c.47]    [c.49]    [c.140]    [c.560]   
Биохимия Т.3 Изд.2 (1985) -- [ c.58 , c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Белки, комплексы с металлами pH и другие факторы, влияющие

Белки-рецепторы фактора Виллебранда

Для действия ДНК-полимеразы необходима предсуществующая Для репликации ДНК требуется много ферментов и белковых факторов

Связывающий белок фактора роста

Связывающий белок фактора роста эпидермиса

Структурный фактор комплекса белка с лигандом

Терминация в отсутствие белковых факторо

Фактор белок

Фактор созревания белок

чувствительный фактор Негемовый железосерный белок



© 2025 chem21.info Реклама на сайте