Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение потока жидкостей

    Основной единицей измерения потока является его расход, представляющий собой количество жидкости, протекающей через определенное поперечное сечение трубопровода в единицу времени. Массовый расход обычно выражается в кг/сек, объемный расход V — в м сек. [c.26]

    Способ установки должен обеспечить наиболее благоприятные условия с одной стороны для притока тепла от измеряемой среды к резервуару термометра, а с другой — для уменьшения отдачи тепла прибором в окружающую среду. Причем, если погрешность от излучения при t 500° С, как правило, невелика, то погрешность из-за теплоотвода даже при правильном монтаже термометра и хорошей изоляции составляет при измерении потока жидкости в трубах 1—2% при измерении потока газа в широких каналах 3—5%. При неправильном монтаже прибора величина этой погрешности может увеличиться до 10-15%. [c.67]


    В работе Лапорта [15] обсуждаются вопросы измерения, регулирования и стабилизации высоких и низких температур. Важно правильно выбрать точки измерения температуры в ректификационном аппарате, так, например, точка измерения температуры в верхней части колонны должна находиться примерно на 10 мм ниже штуцера для вывода пара. Температуру в кубе измеряют в самой нижней его части, чтобы можно было сразу же обнаружить перегрев. Датчики температуры, располагаемые в потоках жидкости или пара, тщательно изолируют и размещают таким образом, чтобы каждый датчик находился в средней части потока. [c.429]

    Не очень точный, но приемлемый во многих случаях метод измерения потока жидкости основан на следующем (рис. 34). Поток жидкости пропускают снизу вверх через узкий цилиндрический сосуд, на корпусе которого по образующей имеется щель. В зависимости от количества протекающей жидкости верхний край вытекающей сбоку струи находится на различной высоте. У щели можно нанести шкалу. Показания прибора становятся более точными, если на поверхности жидкости находится легкий поплавок со стерженьком, оканчивающимся стрелкой. На шкале отмечается высота подъема поплавка, по которой определяют количество протекающей жидкости. [c.104]

    Общие теоретические уравнения. Здесь приложимы те же самые общие принципы, что и в случае измерения потока жидкостей, но имеется несколько важных отличий, требующих учета. Это обстоятельство вытекает из того, что вещество в данном случае является сжи-маемым и при изменении условий быстро изменяет свой объем. Сле-довательно, для фиксирования плотности следует определить давление и температуру перемещающегося вещества (в случае влажных паров должна быть известна и сухость пара) кроме того, если диференциальный напор составляет значительную долю абсолютного давления, то будет наблюдаться изменение плотности в самом измерительном приборе, что следует учесть для получения точных результатов. [c.383]

    Применяемые в промышленности расходомеры для измерения потоков жидкостей непригодны для известкового молока. Для этих целей используют расхо- [c.107]

    Недостатком расходомеров этого типа является повышенная погрешность при измерении потоков жидкости с несимметричными относительно оси профилями скорости. В значительной [c.10]

    О. Гидродинамические параметры отрывных потоков в пучках труб. При поперечном обтекании трубы потоком жидкости с ее подветренной стороны происходит срыв вихрей. Частота срыва [ характеризуется числом Струхаля 5г=/ /и, где й — диаметр трубы и — скорость жидкости. В пучках труб [где и обычно определяется уравнениями (4) и (5)1 картина срыва вихрей становится весьма сложной и для некоторых конфигураций число 5г оказывается значительно большим, чем в случае одиночной трубы. Анализ результатов измерений числа 5г в коридорных пучках в широком диапазоне изменения числа Ке и параметров [c.151]


    В настоящее время практикум по химической технологии в Московском университете включает измерение температур и давлений измерение потоков жидкостей и газов газовый анализ (неавтоматический и автоматический) элементы автоматического регулирования параметров технологических процессов технический анализ жидких и твердых топлив исследование свойств материалов, предназначенных для изготовления аппаратуры (особен- [c.4]

    Измерение потока жидкости производится либо прямым методом — непосредственно специальными приборами, либо косвенными методами — объемным и весовым. [c.460]

    Недостаточно выяснена зависимость Ре/ от.формы элементов слоя и шероховатости их повер сности. Измерения в слое керамических колец [39] показали, что 1/Ре/ выше, чем для шаров (рис. 111.7,6, линия 3). Шероховатость и, в особенности, наличие крупных капилляров, выходящих на поверхность элементов слоя, должны увеличивать релаксационную составляющую коэффициента дисперсии, особенно для потока жидкости. [c.101]

    Измерение скорости растворения зерен в потоке жидкости. Зерна изготавливают из слаборастворимых в жидкости веществ, чаще всего бензойной кислоты- и р-нафтола. В качестве жидкостей используют воду или водно-глицериновые смеси с повышенной вязкостью. Из-за низкого значения коэффициента диффузии в жидкости равновесное насыщение обычно не достигается, даже при малых расходах жидкости. Это позволяет вести опыты при малых значениях Неэ. [c.143]

    В связи с приведенными выше уравнениями для характеристики работы реактора представляет интерес понятие относительной объемной скорости , которая определяется как объемная скорость потока жидкости или газа, деленная на объем реактора поэтому она имеет размерность время (обратную величину относительной объемной скорости часто называют -относительным временем ). Если под объемной скоростью потока понимать объемную скорость, измеренную при температуре и давлении в реакторе, и если под объемом реактора понимать его свободный объем, то тогда относительная объемная скорость имеет простой физический смысл. Объемная скорость в 10 час например, будет означать, что жидкость или газ внутри реактора (т. е. внутри его свободного пространства) сменяется 10 раз в час. Если же объемная скорость потока определяется для каких-то стандартных значений температуры и давлений, отличных от существующих в реакторе, либо, если при нахождении относительной объемной скорости берется весь объем [c.49]

    Может быть предложено следующее качественное объяснение отмеченного несоответствия. При движении газовых пузырей через жидкость элементы последней попадают в гидродинамический след пузыря и могут перемещаться вверх со скоростями, близкими к скоростям подъема пузыря. Это явление может сопровождаться нисходящим движением жидкости за пределами гидродинамического следа пузыря. Такой характер движения должен наблюдаться в застойных зонах при отсутствии общего потока жидкости, а также в системах с малым расходом жидкости, если произведение средней скорости движения гидродинамического следа на его средний приведенный объем больше суммарного расхода жидкости . Можно полагать, что именно такой случай характерен для упомянутых выше слоев. Трасер, введенный ниже первой точки отбора проб, минует ее в гидродинамическом следе пузыря, поэтому измеренное время пребывания жидкости будет меньше среднего. Заметим, что такой механизм движения корреспондирует с причинами контракции при газожидкостном псевдоожижении (см. следующий раздел). [c.668]

Рис. 2.5. Измерение температур открытой термопарой в верхней части ректификационной колонны или колбы (а, б) и потока жидкости в трубке (в) Рис. 2.5. <a href="/info/14238">Измерение температур</a> открытой термопарой в верхней <a href="/info/131048">части ректификационной колонны</a> или колбы (а, б) и <a href="/info/64929">потока жидкости</a> в трубке (в)
    Как известно, скорость потока жидкости плотностью р определяется по измеренной разности йодного Ра и статического Р давлений [4]  [c.16]

    Введение в гомогенный поток жидкости газа, являющегося дополнительным ее турбулизатором, должно изменить условия формирования диффузионного слоя у поверхности частицы и соответственно отразиться на коэффициенте массопереноса. Но такое изменение будет ощутимо только в том случае, если массоперенос лимитируется внешним сопротивлением. Экспериментально это было подтверждено [122] методом измерения диффузионного потока от анодной платиновой частицы диаметром и длиной 5 мм, помещенной в слой зернистого материала. Исследования проводились при следующих гидродинамических условиях О < Ке, < 13,8 О < Ке < 30. [c.76]


    Подобное расслоение потока ведет к уменьшению эффективной разности температур между стеикой трубы и потоком фторида вблизи стенки, следовательно, коэффициент теплоотдачи, рассчитанный на основе измеренной разности температур стенки и в центре свободного потока жидкости, будет ниже, чем в круглом канале при числах Рейнольдса, превышающих 5000. [c.279]

    Некоторые виды расходомеров, использующих плавающие в потоке жидкости нод действием динамических сил элементы (ротаметры), имеют привлекательные особенности. Они широко используются для измерений расходов как жидкостей, так и газов, однако предпочтительнее использовать их для измерения расходов жидкости в диапазоне от —4 до - 400 л мин. [c.319]

    Турбинные счетчики - самый распространенный тип средств измерений, используемые на УУН для измерения объема продукта. Чувствительным элементом турбинного счетчика является аксиальная (осевая) турбинка с лопастями, расположенными под углом к направлению потока жидкости, и свободно вращающаяся на подшипниках. Скорость вращения турбинки прямо пропорциональна скорости потока и, следовательно, расходу проходящей жидкости, а количество оборотов ее за определенный период - объему жидкости, прошедшей за этот период. [c.47]

    Поэтому для определения скорости Ыф измерение и проводят в условиях, позволяющих учесть скорость электроосмотического потока жидкости, а также свести к минимуму влияние конвекции жидкости на движение частицы. [c.100]

    Для измерений в условиях конвективной диффузии обычно используется электрод в виде диска. При высоких скоростях вращения диска центробежная сила отбрасывает раствор от центра диска к краям. Таким образом у центра диска создается некоторое разрежение и поток жидкости устремляется сюда из глубины (рис. 136, б). [c.202]

    Для измерения скорости потока жидкости удобны реометры и ротаметры. [c.43]

    Реометры и ротаметры. Удобным прибором для измерения скорости потока жидкости является обращенный реометр (рис. 10, а). Разность уровней жидкости в коленах реометра зависит от скорости потока, плотности жидкости, а также от величины сопротивления капилляра (его диаметра и длины). [c.23]

    Естественная конвекция носит всегда явно выраженный ламинарный характер. Однако, если поверхность нагрева имеет большую высоту, то поток нагретой жидкости или газа по мере удаления от нижней грани перестает быть спокойным и может стать турбулентным в некоторых случаях он может даже отделиться от стенки. Поэтому коэффициент теплоотдачи а не является постоянным на всем протяжении вертикальной плиты или трубки (фиг. 17). На кижней границе величина коэффициента теплоотдачи велика, по мере подъема по стенке а постепенно уменьшается, так как увеличивается толщина лам1Инарно перемещающегося вдоль стенки потока жидкости. Если пограничный слой становится турбулентным, то указанный коэффициент вновь повышается. Теоретически выведенное для местного коэффициента теплоотдачи а уравнение, правильность которого была проверена измерениями температурного и скоростного полей у вертикальной стенки, содержит в данном случае, по.лшмо разности температур А/, значение высоты плиты или поверхности Я  [c.34]

    Скривен и Пигфорд использовали фигурное сопло, дававшее несужающуюся струю диаметром 1,5 мм. При измерении скорости абсорбции СО2 водой были получены результаты, хорошо согласующиеся с предсказанными на основе предположения о стержнеподобном потоке жидкости (продолжительность 3 мсек и более). Последующий анализ гидродинамики струи, предпринятый Скри-веном и Пигфордом показал, что ошибка, обусловленная допущением однородного стержневого потока жидкости, вряд ли могла быть более 2—3%. [c.85]

    Трубка Вентури оказывает сопротивление потоку жидкости еще меньше, чем сопло. Основным преимуществом трубки Вентури является высокая точность измерения и возможность работы с потоками, содержащими большой процент твердых примесей. Однако изготовление трубки Вентури весьма оложно, требует отливки, обработки на станке и калибровки, что обходится очень дорого. [c.191]

    Примеры графиков подачи и суммарного ускорения потока жидкости, построенных по приведенным формулам для односторонних насосов с различным числом камер г при X = 0,225, даны на рис. 9.1, а, б. По оси ординат единицей измерения служат для расходов гар, для скорости жидкости в трубопроводе где — плош,адь поперечного сечения подводяш,его или нагнетательного трубопровода для ускорений г(л Р1Р . [c.111]

    Для приблизительной оценки характеристик нужно знать, в течение какого времени отдельные молекулы находятся в сосуде. Данные о распределении интервалов времени между моментом попадания той или иной молекулы в -реактор и моментом ее появления в потоке жидкости, выходящем из аппарата, или другими словами, сведения о распределении времени пребывания отдельных молекул в реакторе, можно получить достаточно просто при цомощи непосредственных измерений. Для этого применяют широко распространенный метод исследования, основанный на искусственном нанесении возмущений и анализе вызванных ими последствий. Данные, полученные таким образом, могут быть обработаны двумя различными способами и использованы для объяснения характеристик неидеального потока жидкости в проточном реакторе (см. ниже). [c.240]

    Градуировку резервуаров с использованием счетчика жидкости и образцового уровнемера осуществляют следующим образом. Воду из водопровода или вспомогательного резервуара 6 (см. рис. 32) иасосом 5 подают через напорную линию, счетчик 4, трехходовой клапан 3 и обводную линию 8 в резервуар 6. С пймощью проходного крана, установленного на напорной ливни (па рисунке не показано), счетчик 4 выводят на установив-шнйся режим работы. После достижения установившегося ре- ки.ма (номинального расхода) трехходовой клапан 3 переключают и поток жидкости направляют через линию подачи 9 в градуируемый резервуар . Вода в резервуар поступает без перерыва. Измерение высоты уровня наполнения и объема поступившей воды осуществляют одновременно, через каждые 10 мм. Наполнение осуществляют до уровня, соответствующего номинальной вместимости резервуара, после чего градуировку прекращают. При подходе уровня жидкости к расширителю 7 последний поднимают и прикрепляют к стенке горловины резервуара, как и в предыдущем способе. Результаты измерения высоты уровня и объема воды, поступившей в резервуар, записывают в журнал. [c.101]

    Публикации по парообразованию при вынужденной конвекции смесей крайне ограничены. Одно из самых ранних исследований (I] проведено в 1940 г. с использованием четырехходового испарителя с горизонтальными трубами, нагреваемыми паром. Каждый ход имел три отдельные паровые рубашки для измерения локального теплового потока. Жидкостью была смесь бензол — масло. Установлено, что температура объема жидкости увеличивается по длине кипения насыщенной жидкости, когда она обогащается маслом. Таким образом, часть теплоты, передаваемой смеси, сохраняется в форме скрытой теплоты для поддержания жидкости в условиях насыщения и не идет на парообразование. Средние коэффициенты теплоотдачи рассчитаны для каждого хода, где происходило кипение, во всех трех рубашках. Для данного массового паросодерисания коэффициент теплоотдачи уменьшался с увеличением содержания масла в подаваемой жидкости. [c.419]

    Вязкость характеризует свойство жидкости оказывать сопротивление сдвигу при перемещении частей жидкости относительно друг друга. Для чистых нефтей и нефтепродуктов справедливо уравнение Ньютона т = г) <1у / ё/, где т - напряжение сдвига, т] - динамическая вязкость (коэффициент внутреннего трения), dv/d/ - градиент скорости между слоями жидкости на единицу длины. Единицей динамической вязкости является паскаль-секунда (Па с). Отношение динамической вязкости к плотности называется кинематической вязкостью и измеряется в единицах - м /с. Применяется и внесистемная единица мм /с, идентичная одному сантистоксу (сСм) - единица, которая используется до сих пор. Для измерения вязкости жидкостей в потоке, в основном, используются вибрационные вискозиметры и вискозиметры с падающим шариком [9]. Из отечественных вискозимет- [c.56]

    Небольшие системы реакторов с мешалками непрерывного действия обычно применяют для изучения кинетики химических реакций. Денбиг и Пейдж [3] описывают проточный метод, использованный для исследования химических реакций, когда среднее время пребывания в сосуде составляло от 1 до 4000 секунд. Этот ]четод особенно ценен для исследования довольно быстрых реакций. Метод основан на измерении скорости химической реакции при различных скоростях потока жидкости в условиях стационарных режимов. [c.106]

    Все измерения вязкости жидкостей в лабораторных условиях предусматоивают наличие ламинарного потока. [c.42]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    Скорости потока жидкости в трубах обычно измеряют трубками полного напора при одновременном измерении пьезометрического напора на стенке. На рис. 2-16, а показана схема измерения скоростей с помощью угловой трубки полного напора. Трубка 2 закреплена в державке 8, которая фиксируется в стержне 7 цангой 5. Стержень перемещается радиально в корпусе координат-ннка 3 с помощью микрометрического винта 4. На стержне закреплен ограничитель б, скользящий в прорези корпуса 3. Перемещения трубки отсчитывают по шкале на корпусе. Чтобы повысить точность установки трубки, ограничитель 6 снабжен нониусом. [c.130]

    Зависимость индуцируемой разности потенциалов от средней скорости потока используется для измерения расхода жидкости (магнитогидродинампческий расходомер). [c.215]

    Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки. В жидкостной хроматографии применяют также специальные коллекторы для сбора фракций с последующим их анализом. Однако непрерывное измерение концентрации с автоматической ее записью обладает неоспоримыми преимуществами перед пофракционным анализом. Успех современной жидкостной хроматографии наряду с другими факторами обеспечен именно созданием чувствительных детекторов непрерывного действия. [c.88]

    Микроэлектрофорез. Метод микроэлектрофореза состоит в определении скорости передвижения отдельных частиц с помощью микроскопа при действии внешнего электрического поля. Суспензию видимых в микроскоп частиц помещают в стеклянную ячейку с вмонтированными в ее стенки электродами, на которые подается разность потенциалов. При помощи микроскопа определяют положение отдельной частицы и измеряют путь /г, пройденный ею за некоторое время т. Этот метод позволяет определять электрофоретическую скорость частиц в грубодисперсиых системах, для которых макрометод неприменим из-за быстрой седиментации частиц, а также определять размер и форму частиц и проводить измерения в широком интервале концентрации электролита, причем свойства дисперсионной среды не изменяются во время опыта. Однако рассчитанная из этих измерений скорость движения частицы и представляет собой в отсутствие конвективных потоков жидкости алгебраическую сумму электрофоретической скорости частицы и,fl и электроосмотической скорости жидкости Uo - [c.100]

    Термометры сопротивления пока еще не получили большого распространения в практике лабораторной ректификации из-за сравнительно больших размеров. Однако в последнее время специально для лабораторных работ стали изготовлять малогабаритные термометры сопротивления. Обзор развития техники измерения температур при помощи термометров сопротивления опубликован Винклером [16]. По-видимому, в будущем широкое примепе-нпе в технике лабораторной ректифрхкации получат термисторы, которые изготовляются из смеси различных окислов. Они имеют очень малые размеры и значительно большую чувствительность по сравнению с платиновыми термометрами сопротивления. При этом, однако, во всех случаях важно правильно выбрать точку измерения температуры. Так, в головке колонки температуру следует измерять примерно на 10 мм ниже трубки для отвода паров к конденсатору, а в кубе — возможно ниже, чтобы быстрее установить возможность перегрева. В потоке жидкости или пара измерительный прибор помещают по оси потока и хорошо изолируют. [c.464]

    Для применения выражения (1.50) в качестве расчетной формулы в инженерной практике необходимо получить конкретный вид трех функций, входящих иод знак интеграла. Решение этой проблемы теоретическим путем связано с усложнением модели процесса. С точки зрения экспериментального исследования процесса более удобным является простое выражение (1.48) измерение плотности массового потока жидкости менее- сложно, чем скорости движения капель, а определение среднего радиуса капель широко распространено в экспериментальной практике. Что касается интеграла в правой части выражения (1.48), то его оценка может быть сделана ио экспериментальным данным, относящимся к испарению одиночных капель на нагретой поверхностп. [c.41]


Смотреть страницы где упоминается термин Измерение потока жидкостей : [c.720]    [c.152]    [c.220]    [c.61]    [c.71]    [c.42]    [c.54]    [c.568]   
Справочник инженера-химика Том 1 (1937) -- [ c.875 , c.920 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение потока



© 2025 chem21.info Реклама на сайте