Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодные процессы на платиновых электродах

    Широкие возможности в конструировании рациональных форм малоизнашивающихся электродов (МИЭ) для ряда электрохимических процессов открылись в связи с развитием составных электродов. Б первоначальных конструкциях платиновых электродов для придания им механической прочности и жесткости, а также для подвода (развода) тока в качестве каркаса электрода использовали металлы с хорошей электропроводностью (медь, алюминий, сталь и др.), заш иш енные от коррозии стеклом, кварцем или полимерными материалами. Таким образом, уже самые первые типы конструкций электродов, применявшихся в промышленности, часто решались как составные электроды. Однако, возможности для упрощения конструкции таких электродов, повышения их надежности в работе и снижения их стоимости появились только после того, как стали доступны для использования титан и другие аналогичные металлы. На поверхности таких металлов при анодной поляризации в определенных условиях могут возникать окисные плотные пленки, обладающие высокой химической стойкостью в условиях анодной поляризации, защищающие в дальнейшем основу электрода от разрушения и не препятствующие передаче тока от металла к активному слою электрода. [c.107]


    Процесс этот очень важен для понимания анодного поведения платинового электрода, так как состояние активных центров существенно влияет на кинетику других реакций, например реакции ионизации молекулярного водорода. [c.50]

    С одним из участвующих в титровании веществ например, титрование цинка ферроцианидом калия по методу осаждения. Это титрование прекрасно удается методом обычного амперометрического титрования, при титровании же с двумя индикаторными электродами при напряжении меньше 0,5 в оно вообще не пойдет, так как ионы цинка не восстанавливаются на платиновом электроде, а ионы ферроцианида, которые появятся в растворе после конечной точки, не имея катодной пары , тоже не будут способствовать появлению тока в цепи. Конечной точки на кривой титрования нельзя будет обнаружить. Положение можно исправить двумя способами либо вести титрование при очень большом напряжении — около 1 в, либо добавить в раствор соли цинка несколько капель раствора феррицианида и титровать при 0,04 в. В первом случае ток после конечной точки появится за счет пары ферроцианид (анодный процесс) —выделение водорода (катодный процесс), во вто-)ом — вследствие возникновения хорошо обратимой пары Ре(СЫ)бР /[Ре(СМ)б] . Второй способ предпочтительнее, так как при малом напряжении, как уже говорилось выше, практически устраняется возможность протекания других электродных реакций. [c.107]

    При потенциалах водородной области на анодной потенциодинамической кривой платинового электрода в сернокислых растворах обычно наблюдаются два максимума тока. Этим максимумам отвечают перегибы на водородном участке кривой заряжения. Предполагается, что максимумы тока соответствуют двум различным формам адсорбированного водорода левый максимум — слабосвязанному, а правый — прочносвязанному водороду. Природа адсорбционных центров, соответствующих слабо- и прочносвязанному водороду, пока остается невыясненной. Низкие значения тока в интервале 0,4ч-0,7 В характеризуют двойнослойную область платинового водорода. Последующий подъем тока связан с адсорбцией кислорода. На катодной потенциодинамической кривой наблюдается большой максимум ионизации адсорбированного кислорода. Этот максимум сильно сдвинут в катодную сторону по сравнению с областью адсорбции кислорода при изменении потенциала в анодном направлении, что является следствием необратимости процесса адсорбции кислорода. [c.66]


    Образование окисных или солевых слоев влияет не только на анодное растворение металлов, но приводит и к ингибированию многих других электродных процессов. Так, при адсорбции кислорода на платине замедляется скорость ионизации молекулярного водорода в сернокислых растворах. Такое же влияние оказывает адсорбированный кислород и на электроокисление различных органических веществ (метанола, этанола, этилена и др.). На рис. 198 представлены тафелевские зависимости для анодного выделения кислорода на платиновом электроде из растворов хлорной кислоты. При достижении определенной плотности тока происходит резкий рост перенапряжения и выход о Т Г [c.373]

    Можно указать ряд окислительно-восстановительных органических систем, в контакте с которыми платиновый электрод приобретает термодинамически равновесное значение потенциала, характерное для данной системы и подчиняющееся уравнению Д ернста. К таким системам относятся хинон — гидрохинон, ксан-тогенаты — диксантогенаты, некоторые красители и другие. Однако для большинства органических веществ значения потенциалов разомкнутой цепи не совпадают с предсказываемыми термодинамикой. Это связано со сложным характером превращений, претерпеваемых органическими соединениями при контакте с металлами группы платины, и их необратимостью. Поэтому потенциалы, устанавливающиеся в растворах органических соединений при разомкнутой цепи, оказываются не равновесными, а стационарными. Их величина зависит от соотношения скоростей процессов окисления и восстановления исходных веществ, а также продуктов их превращения, включая продукты хемосорбции, и определяется из условия равенства суммы скоростей катодных процессов сумме скоростей анодных процессов. [c.284]

    В этом случае электрический ток не поступает от внешнего источника, а возникает благодаря разности потенциалов между платиновым электродом, на котором выделяется определяемый металл (медь), и другим электродом, на котором происходит анодный процесс растворения цинка. [c.26]

    Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322]

    В измерительную ячейку вставляют исследуемые электроды и заливают электролит (например, подкисленный раствор сульфата натрия). Вспомогательным электродом для поляризации переменным током служит платиновая сетка поляризация постоянным током осуществляется с помощью гладкого платинового электрода. Катодное и анодное пространства в процессе измерений изолируют при помощи крана. [c.223]

    Нужно помнить, что многие катодные процессы протекают при положительном значении потенциала электрода и, наоборот, некоторые анодные процессы могут протекать при отрицательных значениях. Все процессы, полярограммы которых располагаются на графиках выше оси абсцисс, являются процессами восстановления, или катодными процессами, независимо от того, какой знак имеет потенциал электрода — положительный или отрицательный. Все процессы, полярограммы которых располагаются ниже оси абсцисс, являются анодными, или процессами окисления. Из рассмотрения рис. 10 легко видеть, что на ртутном капельном электроде возможны преимущественно катодные процессы в области отрицательных значений потенциала, а на платиновом — катодные процессы при положительных значениях потенциала и анодные процессы в той же области потенциалов. [c.47]


    При длительной анодной поляризации платиновых анодов и ПТА в растворах хлоридов происходит пассивирование платины по отношению к процессу разряда хлор-ионов [103—108]. При неизменной плотности тока значение потенциала ПТА и платинового анода увеличивается и зависит от условий и времени поляризации. На рис. V-10 приведены потенциодинамические поляризационные кривые для ПТА при 80 °С в 0,5 н. H I на электродах с [c.153]

    Чаще всего в качестве твердых электродов используются платиновые электроды. Так, например, Лайтинен и Кольтгоф [94] изучали токи, ограниченные линейной диффузией к платиновому микроэлектроду (см. гл. VI). Основное достоинство таких электродов сводится к тому, что они позволяют работать при больших анодных потенциалах (теоретически до +1,0—+1,5 в относительно н. к. э. в зависимости от pH раствора), однако используемая область катодных потенциалов сильно сужена низким перенапряжением водорода на платине. Исследование электродных процессов при положительных потенциалах осложняется присутствием на электродной поверхности адсорбированного кислорода [95] или окисной пленки, которые могут затруднять протекание электрохимических реакций. При катодной поляризации такого электрода можно наблюдать ток восстановления пленки кис-. лорода. Точно так же при анодной поляризации электрода, который предварительно был поляризован катодно, наблюдается анодный ток окисления адсорбированных атомов водорода, образовавшихся при катодной поляризации. [c.42]

    Хронопотенциометрия с обращением направления тока (циклическая хронопотенциометрия) может быть использована для изучения химических реакций, следующих за собственно электрохимической стадией (т. е. для исследования кинетики реакций, в которые вступают образующиеся на электроде продукты). Для электродных процессов с последующей мономолекулярной (или псевдомономолекулярной) реакцией выведены уравнения, определяющие величины переходного времени прямой и обратной поляризаций первого и последующего циклов [240, 241]. Применение этого метода для изучения процесса анодного окисления на платиновом электроде га-аминофенола  [c.48]

    На рис. 17 видно также, что при снятии полярограммы ртути (II) [или смеси ртути (II) и железа (1И)] в направлении увеличения положительной поляризации электрода на вольт-амперной кривой появляется анодный пик, после чего сила тока падает до нуля. Этот пик отражает процесс окисления ртути, которая выделилась на электроде во время его поляризации при потенциалах более отрицательных, чем +0,7 в (НВЭ). Совершенно аналогичная картина наблюдается в случае полярографирования золота, серебра, меди и других катионов, восстановление которых сопровождается выделением осадка металла на платиновом электроде, с той лишь разницей, что положение анодных пиков относительно оси абсцисс будет различным чем более электроположителен выделившийся металл, тем при более положительном потенциале происходит его окисление. Потенциал, соответствующий анодному пику того или иного металла, не является постоянной, величиной и зависит от целого ряда факторов, в первую очередь от состава фона, от скорости снятия поляризационной кривой и от количества металла, выделившегося на поверхности индикаторного электрода. От последних двух факторов зависит также глубина пика, а именно чем больше скорость наложения потенциала и чем больше выделилось металла на электроде, тем больше анодный ток. Если соблюдаются одни и те же условия снятия вольт-амперных кривых, то глубина пика оказывается прямо пропорциональной концентрации ионов металла в растворе, а также времени предварительного его осаждения на электроде. Эта закономерность положена в основу полярографических определений с предварительным накоплением вещества на твердом индикаторном электроде 125-127 [c.61]

    В приложении 1 к настоящему руководству дается таблица потенциалов платинового электрода, которыми следует пользоваться при различных случаях титрования. В таблице приведены потенциалы платинового электрода не только для тех веществ, которые находят или могут найти практическое применение, но и для таких, которые не применяются пока ни в качестве титруемых, ни в качестве титрующих растворов, но присутствие которых может оказать влияние на ход амперометрического титрования других веществ. Примером может служить реакция электродного окисления марганца, которая сама по себе не используется при амперометрическом титровании, но может мешать при анодном ферроцианидном методе определения цинка или при других анодных процессах. [c.69]

    Для выбора величины налагаемого на электроды напряжения можно воспользоваться кривой напряжения разложения, т. е. обычной поляризационной кривой, снимаемой в растворе исследуемого вещества при помощи двух одинаковых платиновых электродов. Однако такая кривая, характеризующая величину напряжения, необходимого для того, чтобы процесс электролиза мог начаться, не дает возможности судить о величинах катодного и анодного потенциалов в отдельности, а следовательно, не позволяет и судить о том, какие катодно-анодные пары , присутствующие в данном растворе, являются наиболее выгодными с аналитической точки зрения. Если же пользоваться вольт-амперными кривыми (полярограммами), то выбор наиболее целесообразного напряжения можно сделать очень легко. [c.102]

    Если потенциал металлического анода имеет более отрицательное значение, чем потенциал ионов ОН или других веществ, присутствующих в растворе, в газовой фазе около электрода или на электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Если потенциал металлического анода близок к потенциалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например разряд ионов 0Н . В этом случае также говорят об электролизе с растворимым анодом, но учитывают и другие анодные процессы. Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве нерастворимых анодов применяют золото и платиновые металлы, диоксид свинца, оксид рутения и другие вещества, имеющие положительные значения равновесных электродных потенциалов, а также графит. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сггль. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла. [c.210]

    Между прочим, следует отметить, что на гладком платиновом электроде, активированном шлифовкой тонкой наждачной бумагой (см. сноску на стр. 338), вышеперечисленные анионы все же обладают заметным тормозящим влиянием на скорость образования ЗгО ", хотя этот эффект значительно меньше, чем при выделении Ог. Поэтому возможно, что на поверхности, слабее пассивированной кислородом, Н304 может иметь значительную энергию адсорбции. На рис. 7 показано влияние условий предварительной поляризации на поверхностные свойства платинового анода. Кривую 1 снимали при предварительной анодной поляризации платинового электрода плотностью тока 10 а/сж в растворе, содержащем СГ. На рисунке видно, что хорошо заметный ток окисления СГ появляется при потенциалах, меньших 2,1 в. Кривую 2 получали при предварительной поляризации электрода такой же плотностью тока и при том же составе раствора, что и в предыдущем случае, но без ионов СГ, с последующим понижением плотности тока до значений, меньших 10 а1см . Далее добавляли 0,01 н. ЫН4С1 и измеряли поляризационную кривую. Как можно заметить, в этом случае ток окисления СГ почти полностью пропадает, что указывает на сильное торможение процесса окисления СГ. Однако обе кривые почти совпадают при потенциалах, превышающих 2,1 в. [c.357]

    Рассматривая вышеуказанным способом возможность электрохимического окисления находящихся в растворе компонентов на анодно поляризованном ( /3 а платиновом электроде, приходим к выводу, что легче всего электроокислению могут подвергаться до т.э. ионы Ввиду уменьшения их концентрации по мере титрования потенциал электрода ( д ) постепенно сдвигается в более положительную область потенциалов. Еще до Т.Э., как только концентрация ионов Ре " уменьшится настолько, что его предельный ток ( - р5 2+ч) станет меньше тока анодной поляризации ( ). э и ионы больше Ме могут обеспечить полностью электродньгй процесс.. Поэтому в электрохимической реакции начинают принимать участие другие компоненты, а именно в данном случае молекулы Н2О, окисляясь до О2. Вследствие этого индикаторный электрод принимает новое, бо-. лее положительное значение потенциала ( -гг ),что сопровождается достаточно резким скачком ЛЕ = 1сд , отвечающим к.т.т. Скачок в данном случае пред111ествует т.э., тем саМым обусловливает небольшую, но систематически отрицательную погрешность титрования. [c.188]

    Пусть в анодном пространстве электрохимической ячейки с платиновыми электродами находится водный раствор хлорида калия. Известно, что при электролизе такого раствора потенциалы электродов сдвигаются до значений потенциалов разложения воды (электродноактивное вещество, находящееся в больнюй концентрации), а хлор и калий не выделяются, поскольку для этого нужны более высокие значения потенциалов. Соответствующие анодные и катодные процессы можно выразить следующими реакциями  [c.257]

    Однако в определенных условиях состояние поверхности электродов в растворе данного состава полностью определяется сообщенным электроду количеством электричества. Поэтому платиновые электроды можно назвать совершенно поляризуемыми . Для того чтобы условие совершенной поляризуемости было выполнено, необходимо, чтобы, во-первых, равновесие записанных выше реакций и процессов адсорбции ионов раствора полностью устанавливалось и, во-вторых, чтобы количествами растворенных молекулярных водорода или кислорода, которые взаимодействуют с поверхностью электрода, можно было пренебречь по сравнению с количествами адсорбированных водорода или кислорода. Если, например, в растворе содержится водород, тр убыль адсорбированного водорода при анодной поляризации электрода будет воспол-няться диффузией растворенного водорода к поверхности и переходом его в адсорбированное состояние. [c.183]

    На рис. 39 приведены прямой (анодная поляризация ->) и обратный ход (катодная поляризация кривой заряжения, полученной при поляризации платинированного платинового электрода в 0.1 н. Нг304 при комнатной температуре. Кривая заряжения имеет три отчетливо выраженных участка а, Ь, с. На участке а ( водородная область ) величина АСР велика по сравнению с Де. Поэтому можно считать, что практически все сообщенное электроду количество электричества тратится на снятие адсорбированного водорода, и поэтому можно определить количество адсорбированного водорода по количеству электричества, затраченному в водородной области кривой заряжения (Q на рис. 39). Кинетикой процессов, осуществляющихся в водородной области, определяются и условия поляризации. Лимитирующими стадиями процесса могут ыть или поверхностная диффузия водорода (если принять, что ионизация водорода осуществляется только на некоторых центрах поверхности), или непосредственно скорость ионизации водорода. Поэтому скорость поляризации электрода, обусловливаемая приме- [c.189]

    С химической поляризацией познакомимся на примере электролиза водного раствора N32804 с платиновыми электродами. В растворе сульфата натрия потенциал платины определяется возможностью адсорбции на ее поверхности ионов и молекул раствора и одинаков для обоих электродов. Если к электродам приложить небольшую разность потенциалов от внешнего источника тока, а затем постепенно ее увеличивать, то с помощью приборов можно зафиксировать изменение силы тока в цепи в зависимости от приложенного напряжения (рис. 64). Пока не будет достигнуто напряжение разложения Ер , ток в цепи увеличивается очень медленно. Это объясняется тем, что катодный и анодный процессы [c.211]

    Границы стабильности растворов. Литературные данные по этому вопросу представлены в табл. 3. В целом по устойчивости к восстановлению ДМФ сравним с ацетонитрилом и диметилсульфоксидом, но обладает большей склонностью к процессам окисления. Лимитирующей реакцией при анодной поляризации с ртутным электродом является растворение, ртути. В случае платиновых электродов в перхлоратных растворах стабильность ограничивается реакцией окисления растворителя. Эта реакция, изученная О Доннеллом и [c.16]

    ТГАБ используют при проведении процессов восстановления, иа ртутном электроде предельный катодный потенциал в среде ТГАБ составляет около —2,6 В (отн Ag /Ag l) предельный анодный потенциал на платиновом электроде равен да0,3 В. [c.222]

    С увеличением плотности тока растет разница между значениями перенапряжения для кислорода и хлора. Особенно велика зта разница на платиновых электродах. Позтому при применении платиновых анодов анодный процесс идет с очень высоким выходом хлора по току происходит незначительный разряд кислорода на платиновом аноде из концентрированных растворов Na I. [c.87]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]

    Сурьма (III) при некоторых условиях мешает процессу электролиза возможно, это объясняется тем, что образование Sb204 на поверхности электрода делает его пассивным при дальнейшем окислении мышьяка. Оказалось, что предварительная поляризация платиновых электродов приводит к таким же результатам мышьяк (III) медленно реагирует с оксидной пленкой платины на анодно поляризованных электродах до восстановления чистой поверхности платины. [c.46]

    В настоящее время область применения амперометрического метода значительно расширилась вследствие введения новых реактивов и новых приемов работы. Пополнились также сведения о поведении платинового электрода при анодных и катодньр процессах в различных средах и о влиянии этих процессов на ход кривых амперометрического титрования. Эти данные важны потому, что платиновый электрод вее больше вытесняет ртутный капельный из практики амперометрического титрования на долю ртутного капельного электрода приходится в настоящее время лишь около 35% всех публикуемых в мировой печати работ по амперометрии. [c.7]

    В описанных случаях создание надлежащей кислотности фона необходимо для протекания химической реакции в растворе, электродный же процесс восстановления элементарного иода или окисления иодид-иона до иода почти не зависит от кислотности среды. Иначе обстоит дело при восстановлении на платиновом электроде кислородсодержаших анионов — перманганата, бихромата и ванадата, имеющих большое применение в практике амперометрического титрования. Восстановление этих анионов на платиновом электроде происходит необратимо. Это значит, что если в растворе присутствуют одновременно окисленная и восстановленная ормы, например СГ2О7 и Сг , то непрерывной катодно-анодной [c.74]

    Другим интересным примером является разряд ионов двухвалентного свинца. Как уже указывалось, на платиновом электроде возможно восстановление ионов этого электроотрицательного металла потому, что, как только начинается восстановление ионов поверхность платины покрывается металлическим свинцом, обладающим высоким перенапряжением для выделения водорода. На полярограмме в этом случае получается хорошо выраженная катодная волна при потенциалах от —0,4 до —0,9 в (рис. 27). С другой стороны, ионы свинца способны окисляться на платиновом электроде до высшей валентности. Поэтому если вольт-амперную кривую катионов свинца снимать от —1,0 в в направлении даеличения положительной поляризации электрода (кривая /), то сперва наблюдается ток восстановления ионов РЬ + (участок /), а затем кривая пересекает ось абсцисс, и в области потенциалов от —0,3 до +0,2 б появляется анодный пик окисления выделившегося на электроде металлического свинца (участок / ) при дальнейшем изменении потенциала в сторону положительных значений при + 1,2 б начинается следующий электродный процесс —окисление ио1юв двухвалентного свинца до двуокиси (участок /"). Электрод в этот момент покрывается коричневым, быстро чернеющим налетом. Если же теперь вольт-амперную кривую снимать слева направо от +1,6 б (кривая //), то сразу же после волны окисления ионов свинца (участок 2") возникает катодный ток — ток восстановления двуокиси свинца до его двухвалентного состояния (участок 2 ). Этот ток быстро возрастает, достигая максимума, и затем резко падает в тот момент, когда на электроде исчезают последние остатки двуокиси свинца. После этого в катодной области при потенциале —0,4 б вновь начинается волна восстановления ионов РЬ2+ (участок 2). [c.84]


Библиография для Анодные процессы на платиновых электродах: [c.159]   
Смотреть страницы где упоминается термин Анодные процессы на платиновых электродах: [c.204]    [c.163]    [c.259]    [c.387]    [c.139]    [c.206]    [c.254]    [c.29]    [c.427]    [c.461]    [c.19]    [c.24]    [c.91]   
Смотреть главы в:

Методы полярографического и амперометрического анализа  -> Анодные процессы на платиновых электродах




ПОИСК





Смотрите так же термины и статьи:

Анодные процессы

Процессы на электродах

Ток анодный

Электрод платиновый



© 2024 chem21.info Реклама на сайте