Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства алюминия и его соединений

    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]


    В чем проявляется различие в структуре и свойствах водородных соединений алюминия и бора  [c.144]

    Свойства алюминия и его соединений [c.277]

    Физические и химические свойства алюмини 4. Соединения алюминия. .  [c.472]

    При увеличении п от 2 до 3 элемент приобретает уже металлические свойства. Алюминий — металл, но еще не типичный. Его соединения обладают амфотерными свойствами. [c.421]

    Работа № 31 Алюминий и его соединения Цель работы изучение свойств алюминия и его важнейших соединений. [c.125]

    Теряя электроны, атомы превращаются в положительные ионы с зарядностью 1+ и 2+. Они относятся к типу благородногазовых ионов, бесцветны, обладают большим радиусом и малыми поляризующими свойствами. Большинство соединений их бесцветны, обладают высокой термической устойчивостью, хорошей растворимостью в воде. Ряд соединений лития и бериллия (несколько менее натрий и магний) отличаются от остальных своих аналогов по подгруппам. Это связано с небольшими величинами радиусов их ионов и особенностями структуры электронной оболочки последних, во внешнем слое которой содержится по 2 электрона, тогда как все другие ионы имеют по 8 электронов. Соединения лития во многом сходны с соединениями магния, а соединения бериллия — с соединениями алюминия (аналогия по диагонали). Ионы лития и бериллия образуют комплексные соединения, что для ионов щелочных и щелочноземельных металлов, как правило, нехарактерно. Большинство соединений имеют гетерополярный тип связи и могут быть отнесены к ионному типу молекул. В растворе все соединения ведут себя как сильные электролиты. [c.270]

    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы химических элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — во многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p, вследствие которого все они проявляют степень окисления +3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединений. [c.150]

    Наиболее вредными примесями из металлических являются железо и кремний, которые образуют с алюминием соединения, понижающие его пластические свойства и стойкость к коррозии. Поэтому для электролиза пригодна только очень чистая окись алюминия, свободная от окислов железа и двуокиси кремния. [c.180]


    Оксид и гидроксид алюминия являются амфотерными соединениями, т. е. проявляют как основные, так и кислотные свойства. Основные свойства этих соединений проявляются в реакциях с кислотами, а кислотные — в реакциях со щелочами  [c.129]

    Закономерности, найденные Ф. М. Шемякиным, были подтверждены М. А. Блох (1934), А. Е. Ферсманом (1937), Д. Купером (1964), А. Барнардом (1965). Как указывает Д. Купер, литий действительно близок к магнию, бериллий к алюминию, бор к кремнию — по свойствам их соединений. А. Е. Ферсман объяснял диагональное направление сходством ионных радиусов (табл. 3). Можно это объяснять и сходством электроотрицательностей (Л. Полинг). Вероятней всего это за- [c.21]

    Оксид алюминия. Поверхность этого сорбента, образованная ионами алюминия и кислорода, способна создавать сильное электростатическое поле, обладающее поляризующим свойством. Вследствие этого на оксиде алюминия соединения, имеющие систему легко смещаемых электронов (непредельные, ароматические и др.), сорбируются в большей степени, чем на силикагеле. Вода легко адсорбируется на поверхности оксида алюминия. При нагревании до 300—400°С большая часть адсорбированной воды удаляется. Остается вода, взаимодействующая с поверхностью, в результате чего образуются гидроксильные группы. В такой форме оксид алюминия используют в хроматографии. Различают три вида адсорбционных центров на оксиде алюминия кислотные, взаимодействующие с веществами, имеющими области с высокой электронной плотностью основные — адсорбирующие кислоты электронно-акцепторные, взаимодействующие с легко поляризуемыми ароматическими молекулами. [c.597]

    Алюминий. Природные соединения алюминия. Свойства алюминия и его техническое значение. Алюминотермия. Амфотерный характер окиси и гидрата окиси алюминия. [c.279]

    Оксид и гидроксид алюминия являются амфотерными соединениями, т. е. проявляют как основные, так и кислотные свойства. Основные свойства этих соединений [c.226]

    Следует отметить, что для существенного снижения проницаемости осадки должны быть рыхлыми, занимать практически весь объем порового пространства, в то же время обладать хотя бы некоторой механической прочностью. Как известно из коллоидной химии, такими свойствами обладают соединения алюминия и кремния. Известно, что кремнефтористоводородная кислота и ее соли являются доступными и дешевыми побочными продуктами производства минеральных удобрений. Соединения кремнефтористоводородной кислоты допущены к применению в нефтедобыче по санитарно-гигиеническим условиям. Кремнефтористоводородная кислота [c.307]

    В чем сходство свойств соединений железа со свойства- и соединений алюминия  [c.151]

    Алюминий (ГОСТ 11069—74) и его сплавы (ГОСТ 4784—74, СТ СЭВ 730—77, СТ СЭВ 996—78) применяют для изготовления резервуаров, колонн, теплообменников, реакционных и других аппаратов, работающих в интервале температур от —196 до +150°С при давлении до 0,6 МПа. Алюминий химически стоек к агрессивному действию концентрированной азотной кислоты, сернистых соединений и паров серы, а также многих органических соединений, но не стоек к действию щелочных растворов. Положительными свойствами алюминия является его высокая теплопроводность (в 4,5 раза выше, чем у стали), малая плотность и высокая пластичность, обеспечивающая хорошую прокатываемость и способность штамповаться. Однако алюминий имеет малую прочность. [c.13]

    Учитывая специфические свойства алюминийорганических соединений, а также использование в их производстве водорода, этилена, изобутилена, хлористого этила, натрия, алюминия (мелкодисперсного и актив ного, который может самовоспламеняться на воздухе), следует считать производство алюминийорганических соединений одним из наиболее пожаро- и взрывоопасных в химической промышленности, и поэтому техника безопасности и противопожарная техника при получении этих веществ играют особую роль. [c.288]

    Свойства алюминия и его соединений. Алюминий — элемент III группы Периодической системы Д. И. Менделеева. Электронное строение атома в основном состоянии— s 2s 2p 3s 3p . Устойчивой является степень окисления + 3, однако известны соединения алюминия, в степени окисления +1, которые образуются при высоких температурах. [c.50]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]


    Различные комплексные металлические соли ацетилацетона обладают характерными свойствами например, соединения меди окрашены в синий цвет и растворимы в хлороформе, соли железа имеют ярко-красную окраску, а ацетилацетонаты алюминия (т. кип. 314°) и бериллия (т. кип. 270°) представляют собой летучие, перегоняющиеся вещества. Строение этих солей, согласно К00рдинащ 0нн0му учению Вернера, мо Кно представить следующим образом  [c.321]

    Успешное проведение реакций Фриделя— Крафтса зависит от целого ряда факторов, злияюгцих на выбор конструкции реакционных аппаратов. К таким факторам относятся химические свойства органических соединений, подвергаемых конденсации, количество и качество хлористого алюминия, температура и вязкость реакционной среды, наличие растворителя и его свойства. [c.343]

    Компоненты электролита в условиях электролиза могут образовывать ряд соединений, которые способны влиять на свойства электролита, а также участвовать в самом процессе электролиза. Свойства расплавленного электролита, обусловленные свойствами этих соединений, — электропроводность, плотность, вязкость, поверхностное натяжение и фугитивность солей, входящих в состав электролита, —имеют первостепенное значение при электролитическом получении алюминия. В криолит-глиноземном расплаве могут образоваться ионы, в большей или меньшей степени участвующие в переносе тока (например, Ма+ и А1рз-). [c.496]

    Многие осадки, содержащие анионы органических кислот, например ди-метилглиоксимат никеля, оксихинолинат алюминия, растворяются в спирте, ацетоне и других растворителях значительно лучше, чем в воде. То же наблюдается для некоторых неорганических соединений комплексного характера так, например, йодная ртуть, роданидные комплексы железа, кобальта хорошо растворяются во многих органических растворителях. В некоторых случаях растворимость веществ в органических растворителях настолько велика, что оказывается возможным извлекать вещество из водного раствора путем встряхивания с органическим растворителем. На этих свойствах некоторых соединений основаны методы экстрагирования (см. 26). [c.48]

    Кроме того, они образуют соединения, отвечающие степени окисления +2 и -ЬЗ. Соединения хрома (III) по свойствам во многом сходны с соединениями алюминия (III). Это объясняется тем, что радиусы ионов Сг + (0,63А) и AF+ (0.54А) близки. Гидроксид хрома Сг(ОН)з, как и А1(0Н)з, амфотерное соединение. В отличие от соединений алюминия соединения хрома (III) обладают восстановительными свойствами. Высшие оксиды рассматриваемых элементов ЭО3 и соответствующие им гидроксиды Н2ЭО4 обладают кислотными свойствами. Соединения хрома (VI) СгОз, Н2СГО4, Н2СГ2О7 и их соли — сильные окислители. [c.97]

    В. этих методах разделения используется свойство малорастворимых соединений переходить в раствор под действием веществ, образующих координационные соединения с катионом или анионом осадка. Например, при действии NaOH на растворы соединений железа (III) и алюминия сначала образуются гидроксиды этих элементов  [c.160]

    Соединения хрома (III) по многим свойствам напоминают соединения алюминия. Это обусловлено тем, что соединения трехналентных алюминия и хрома имеют в основном ионное строение. Близость величины ионных радиусов А1 + и Сг + является причиной сходства свойств образуемых этими ионами соединений. [c.275]

    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    В повседневный быт алюминий вошел главным образом в виде всевозможной кухонной посуды. Здесь, помимо легкости и прочности, используются и другие ценные свойства алюминия высокая теплопроводность, способность противостоять действию не только холодной, но и кипящей воды и неядовитость его соединений, которые в небольшом количестве могут образоваться при действии на алюминий слабых органических кислот, содержащихся в пище. [c.145]

    Особенности свойств и соединений бериллия. Атом бериллия имеет только два электрона на предвиешнем электронном уровне в отличие от атомов других элементов ПА-подгруппы, у которых на этом уровне по 8 электронов. Кроме того, у атома бериллия наименьший радиус (см. табл. 23). Поэтому бериллий проявляет диагональное сходство с алюминием. Подобно алюминию, он растворяется не только в кислотах, но и в щелочах с образованием тетрагидроксобериллата  [c.296]

    Общая характеристика подгруппы хрома. Электронная конфигурация хрома н молибдена (п—1)с1 П5 вольфрама п—Их степень окисления +6. Для хрома еще характерны степени окисления +3 и +2. Соединения хрома (И) —сильные восстановители. Они окисляются на воздухе, если только Сг +-1юи не стабилизирован за счет комплексообразовання. В трехзарядном состоянии хром близок к алюминию. Соединения молибдена и вольфрама по свойствам близки друг другу. Для них характерны степени окисления +4 н +6. [c.417]

    Физические и химические свойства алюминийоргаиических соединений тесно связаны с электронным дефицитом входящих в их состав атомов алюминия. Координационная ненасьиценность этих соединений возникает из-за того, что четыре орбитали алюминия заняты только тремя электронами (35 , Зр). Следовательно, мономерные соединения алюминия(III) являются сильными кислотами Льюиса. Полное или частичное насыщение электронного дефицита алюминия может достигаться путем самоассоциации, приводящей к циклическим димерам, тримерам нли даже олигомерам в отсутствие растворителей, являющихся сильными основаниями Льюиса. Относительно стабильные донорноакцепторные связи присутствуют в алюминийоргаиических алкоксидах, амидах, сульфидах, фосфидах и в меньшей степени в галогенидах. В этих соединениях мостик образуется анионным лигандом, как, например, в диметил ал юминийизопропоксиде (1). [c.96]

    В отличие от органических соединений алюминия препаратив ная химия органических производных галлия и индия изучена мало [110]. Частично это можно объяснить подобием химических свойств органических соединений этих металлов и алюминийорга-нических соединений, которые гораздо более доступны как в промышленном, так и в лабораторном масштабах. Ниже кратко описаны физические и химические свойства галлий- и индийорга-нических соединений и их особенности по сравнению со свойствами аналогичных соединений алюминия. [c.132]

    На основании известных Вам свойств алюминия предскажите свойства простого вещества н типичных соединений галлия. Постарайтесь иайтн X литературе характеристики этих веществ, известные из опыта и предсказанные Д. И. Менделеевым. Сравните их. [c.134]


Смотреть страницы где упоминается термин Свойства алюминия и его соединений: [c.61]    [c.61]    [c.10]    [c.96]    [c.252]    [c.278]    [c.407]    [c.336]    [c.328]    [c.421]    [c.346]    [c.10]    [c.65]    [c.129]    [c.129]   
Смотреть главы в:

Курс общей химии -> Свойства алюминия и его соединений




ПОИСК





Смотрите так же термины и статьи:

Алюминий Свойства



© 2025 chem21.info Реклама на сайте