Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлористый алюминий качество

    При действии хлористых алкилов или олефинов на ароматические углеводороды или фенолы легко протекает реакция с образованием алкили-рованных соединений. Реакция алкилирования должна проводиться в присутствии различных катализаторов, к числу наиболее широко применяемых относятся хлористый алюминий, безводная фтористоводородная кислота, фтористый бор и серная кислота. При работе с -хлористым алкилом как алки-лирующим компонентом в качестве катализатора применяется хлористый алюминий и в некоторых случаях безводное хромное железо (реакция Фриделя-Крафтса). [c.226]


    В весьма больших количествах хлористый метил применяется в настоящее время в качестве растворителя при производстве бутил-каучука сополимеризацией изобутилена с 2—3% изопрена или бутадиена. При этом он выполняет двоякую функцию с одной стороны, он является растворителем для полимеризующего катализатора (безводного хлористого алюминия) и, с другой, служит разбавителем для проведения реакции. [c.208]

    В качестве катализатора изомеризации в промышленности в первую очередь используют безводный хлористый алюминий. Хлористый водород безусловно необходим как промотор этой реакции. Чистый парафиновый углеводород не реагирует необходимо наличие следов олефинов, которые всегда присутствуют в техническом продукте (вполне достаточно 1 весовой части олефина на 10 000 весовых частей парафинового углеводорода) [18]. Если реакцию проводят при достаточно высокой температуре, когда всегда образуется небольшое количество олефинов, изомеризуется и совершенно чистый продукт. Однако степень изомеризации всегда бывает больше, если к парафиновому углеводороду заранее добавлено небольшое количество олефина. [c.517]

    Для получения такого депрессатора (присадки для понижения температуры застывания масел типа парафлоу) конденсируют твердый парафин, хлорированный нри температуре 80 до содержания хлора, равного 14%, с нафталином в присутствии хлористого алюминия. В качестве разбавителя применяют хлористый этилен. Конденсацию ведут нри температуре 30— 35°, повышая ее перед концом реакции до 60°. [c.123]

    Метилциклогексан при нагревании с бромистым или хлористым алюминием практически не изменяется [18]. При помощи метода меченых атомов с применением метилциклогексана, содержащего С1 -метильную группу, удалось показать, что изомеризация идет и что после реакции. 31% метилциклогексана содержал радиоактивный углерод в кольце [58]. Реакция проводилась при 25° в течение 21 часа, в качестве катализатора были взяты бромистый алюминий и бромистый водород, а в качестве инициатора цепи — вто/ -бутилбромид. В отсутствии инициатора в кольце оказалось только около 1% радиоактивного углерода. [c.46]

    Хлорпарафин непосредственно конденсируют в смазочный материал действием безводного хлористого алюминия или активированного алюминия. Конденсация сопровождается отщеплением хлористого водорода. Следует предположить, что в качестве промежуточного продукта образуются олефиновые углеводороды. Протекание реакции можно представить следующими уравнениями  [c.235]


    В качестве катализатора применяют безводный хлористый алюминий с различными добавками, способствующими полному и быстрому превращению хлорированного когазина в не содержащие хлора масла. [c.239]

    В качестве катализатора предпочтительно применять активированный алюминий, который первоначально взаимодействием с небольшим количеством хлористого водорода, присутствующего в хлорированном парафиновом углеводороде, превращают в обладающий весьма высокой реакционной способностью хлористый алюминий. В процессе образования этот хлористый алюминий вследствие своей высокой активности катализирует дальнейшее отщепление хлористого водорода из хлористого парафина. [c.240]

    Существуют два метода конденсации продуктов прямого хлорирования высших парафиновых углеводородов с фенолом. Для этого можно использовать или реакцию Фриделя — Крафтса с применением хлористого алюминия в качестве катализатора, или конденсацию в присутствии цинковой пыли. [c.246]

    Хлористый алюминий наносят на боксит до желаемого содержания сублимацией. В качестве носителя можно также применять диатомит [29]. Другие условия проведения реакции приведены в табл. 138. [c.523]

    Подобный сложный ион карбония был предложен [20] в качестве активного агента полимеризации этилена в присутствии хлористого алюминия. Этот комплекс, содержащий подобно обычному иону карбония, образованному в результате присоединения протона к олефину, атом углерода с дефицитом электронов, отличается от истинного иона карбо- [c.228]

    Этилмеркаптан легко вступает в реакцию с (СНз)2С = СНС(СНз)з при низких температурах [6] и при использовании в качестве катализатора хлористого алюминия, давая выход в 83% тиоэфира [c.346]

    Применение в качестве индикатора радиоактивного водорода. Была сделана попытка определить стадии, через которые протекает изомеризация -бутана в изобутан при помощи радиоактивного изотопа водорода, трития [65]. Катализатор представлял собой хлористый алюминий, нанесенный на древесный уголь или на окись алюминия. Он применялся в присутствии или в отсутствии хлористого водорода. Обмен атомами водорода между бутаном и молекулярным водородом мало дает для объяснения механизма изомеризации, за исключением случаев, когда молекула бутана атакуется водородом. Степень обмена с хлористым водородом указывает на более эффективное участие его в реакции. Поскольку с тщательно очищенными реагентами опыты не проводились, любые заключения о механизме реакции, основанные на обмене трития и водорода, остаются открытыми для критики. [c.21]

    Полностью фторированные углеводороды вступают лишь в несколько реакций из тех, которые претерпевают галоидалкилы. Активные металлы, как натрий или калий [31], реагируют при 300—400°, вызывая полный распад вещества, тогда как натрий в жидком аммиаке реагирует медленно уже при комнатной температуре [25]. Хлористый алюминий вызывает деструкцию и замещение фтора, тогда как водород, хлор или бром дают продукты с более короткой цепью ири 700—900° [22]. Сам фтор реагирует при более низких температурах, давая в качестве основного продукта F4 [14J. [c.76]

    Синтетическое смазочное масло нз продуктов хлорирования средиего масла может получаться двумя путялш конденсацией хлорпарафина с ароматическими углеводородами, особенно с нафталином, в присутствии безводного хлористого алюминия методом Фриделя-Крафтса, пли действием безводного хлористого алюминия, или активированного алюминпя на хлорпара-фин как таковой. При этом, вероятно, происходит полимеризация олефипов, образующихся в качестве промежуточных продуктов. [c.122]

    Хлористый алюминий получил некоторое промышленное применение при производстве бензина из газойля в период первой мировой войны и позже [57]. Бензин, получавшийся таким образом, был бесцветным, не содержал олефинов, в значительной степени был свободен от сернистых соединений и имел сравнительно высокие антидетонационные качества, последнее, по-видимому, является следствием изомеризации м-парафинов в разветвленные парафины. [c.97]

    Жидкий продукт, получающийся таким способом, полимеризуется в присутствии хлористого алюминия при атмосферном давлеиии и 25° с образованием вязкого масла, пригодного для использования в качество смазочного материала. [c.187]

    Реакции конденсации ускоряются такими активными катализаторами, как хлористый алюминий и хлористое железо, а также и менее активными катализаторами, как хлориды висмута и цинка. При использовании в качестве катализатора хлористого алюминия реакцию ведут при низкой температуре (от —30° до 0°), тогда как в случае применения хлористого висмута требуется более высокая температура (20—100°). [c.227]

    Эффективны два типа катализаторов кислого характера безводные соли галоидоводородных кислот типа Фриделя — Крафтса и кислоты, способные к переносу протона. В качестве примеров катализаторов первого типа можно привести хлористый алюминий, бромистый алюминий, хлористый цирконий и фтористый бор газообразный хлористый водород используется в качестве промотора этих катализаторов. Серная кислота и жидкий фтористый водород являются главными катализаторами второго типа. Как соли галоидоводородных кислот, так и переносящие протоны кислоты переходят в нижние слой или осадки , которые представляют собой комплексы, получающиеся в результате соединения катализаторов [c.304]


    Образова.ние сложных эфиров. Сложные алкилэфиры иногда присутствуют как примеси в продукте алкилирования. Их образование связано с реакцией второй ступени цепного механизма алкилирования. Они могут также образоваться в результате присоединения катализатора (фтористый водород, серная кислота) или активатора катализатора (хлористый водород при применении хлористого алюминия в качестве катализатора) к олефину или к полимеру. В неблагоприятных условиях для водородного обмена с изопарафиновым углеводородом эфиры получаются как таковые. [c.320]

    Алкилирование изобутана изопропилхлоридом можно осуществить, используя в качестве катализатора раствор хлористого алюминия в нитро-метане [39]. Так, при нагревании нри 60—70° смеси изобутана и изопропилхлорида в присутствии такого раствора катализатора менее 30 % хлорида было восстановлено в пропан. Жидкий продукт, полученный в в количестве 100—130% вес. на пропилен, который можно получить, исходя из изопропилхлорида, состоял из смеси парафинов гептаны и октаны были получены в наибольших количествах гептанов 15—16% и октанов 7—15% от теоретического выхода. [c.332]

    В лаборатории в качестве источника алкильных групп берут обычно галоидалкилы, а галоидные металлы, как хлористый алюминий или железо, служат в качестве катализатора. [c.428]

    В качестве катализатора для процесса Дау выбран хлористый алюминий. Он используется не как таковой, а в виде тяжелого жидкого [c.492]

    Если в качестве исходного углево.дорода перерабатывать додекан, то образуются приблизительно равные количества 2-, 3-, 4,-, 5- и 6-фенил-додекаиог . Однако аналогичные смеси фепилдеканов получались и в тех случаях, когда 1-хлордодекан применялся как исходный материал для реакции Фрпделя — Крафтса, так как добавка безводного хлористою алюминия, применяемого в качестве катализатора алкилирования, вызывает весьма сильную изомеризацию. [c.248]

    Чаще всего алкилирование арилсульфонатов проводят олефинами в присутствии серной кислоты, безводного хлористого алюминия или фтористого водорода в качестве катализаторов [251] (см. второй том). В 1949 г. производство арилсульфоната на основе бензола составило около 66 000 т в пересчете на 100%-ное активное вещество, а к 1953 г. оно возросло приблизительно до 250 ООО г. [c.249]

    Наконец, в качестве катализатора изомеризации можно применять раствор хлористого алюминия в треххлористой сурьме. [c.517]

    Ацилирование и алкилирование по Фриделю-Крафтсу являются удобными реакциями для синтеза углеводородов, однако требуется тщательное изучение направления этих реакций в том случае, когда имеется нозможность образования изомерных соединений (изомерия положения) или перегруппировок. Если в качестве катализатора применяется хлористый алюминий, то следует использовать химически чистый препара 1, чтобы избежать побочных реакций. Реакция ацилирования заслуживает предпочтения в связи с тем, что алкильные группы довольно легко перегруппировываются в присутствии А1С1з. [c.509]

    Очищенный тетралин ацилируют фталевым ангидридом в присутствии химически чистого хлористого алюминия к растворе тетрахлор-этана. /З-Тетралилкетокислота путем дробной кристаллизации легко отделяется от небольшого количества а-производного, образующегося в качестве побочного продукта. Чистое /3-производное при циклодегидратации при помощи 20 % олеума превращается главным образом в хинон нафтаценового ряда. [c.515]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    При употреблении в качестве катализатора серной кислоты характер полимеризации зависит от концентрации кислоты смешанная полимеризация происходит при концентрации кислоты выше 90%, тогда как при болео низких концентрациях идет обычная (истинная) полимеризация [26]. В присутствии фосфорной кислоты характер полимеризации зависит от температуры. Смешанная полимеризация в этом случае происходит при температурах выше 250—300° С [27]. С хлористым алюминием только в особых условиях, например, при использовании металлического алюминия в качестве нромотирующего реагента, может происходить полимеризация обычного типа. [c.226]

    Влияние воды. Промотирование водой реакции изомеризации предельных углеводородов при применении в качестве катализаторов бромистого пли хлористого алюминия было установлено ранее [43]. Сначала думали, что действие воды состоит просто в образовании галоидводорода, однако позже было показано, что вода образует гидроксиалюминийгалоиды, которые сами являются активными катализаторами. При применении слишком большого количества воды каталитическая активность уничтожается. [c.19]

    Влияние водорода. О применении водорода под давлением для подавления побочных реакций при изомеризации н-пентана сообщалось различными исследователями [21, 34, 72]. В контрольных опытах, в которых н-пентан нагревался с хлористым алюминием под давлением азота, в результате побочных реакций ббльшая часть пентана превращалась в бутаны, гексаны и более высококипящие алканы, а катализатор — в вязкую красную жидкость [34]. Как побочные реакции, так и изомеризация почти полностью подавлялись при применении вместо азота водорода при начальном давлении 100 ат и температуре 125°. П0лон<ительное влияние на реакцию изомеризации оказывало введение в водород некоторого количества хлористого водорода. Степень изомеризации увеличивается с повышением содержания хлористого водорода. Хорошие выходы изопентана были получены также при добавке к реагентам вместо хлористого водорода небольшого количества воды или когда в качестве катализатора применялся технический хлористый алюминий, содержащий от 15 до 20% несублимированпого вещества, даже без добавок хлористого водорода. [c.23]

    В повздении некоторых парафинов в присутствии серной кислоты наблюдается положение, несколько напоминающее случай с неопентаном. Изомеризация при помощи серной кислоты подробно обсуждается ниже. Здесь достаточно сказать, что серная кислота особенно в мягких условиях склонна катализировать только такие реакции изомеризации, которые можно рассматривать как внутримолекулярный переход водорода между третичными атомами углерода, исключая вторичные и первичные атомы. Образование продуктов, получающихся при применении в качестве катализаторов хлористого или бромистого алюминия, можно удовлетворительно объяснить внутримолекулярным переходом водорода между третичными и вторичными, но не первичными атомами углерода. Приведем пример. В присутствии серной кислоты легко устанавливается равновесие между 2- и 3-метилпентанами, причем 2,2-диметилбутан отсутствует, хотя термодинамически он является более выгодным изомером и преобладает, когда равновесие устанавливается на хлористом алюминии как катализаторе. [c.26]

    Например, при проведении реакции в присутствии хлористого алюминия при температуре от —20° до —15° была получена с выходом 72% смесь хлор-/и/)ет-бутилциклогексанов, из которых около 85% составлял изомер (III), остальное — изомер (IV) основной побочный продукт — хлорциклогексан — получен с выходом в 5%. С другой стороны, при использовании в качестве катализатора фтористого бора при 0° был получен только изомер (IV) с выходом в 23% вместе с продуктом дегидрохлорирования его 1-/га/)е7и-бутил-1-циклогексеном (выход 12%) и цикло-гексилхлоридом (выход 15%). При применении в качестве катализатора хлористого висмута при 0° или при комнатной температуре был получен конденсат хлорбутилциклогексанов (с выходом 5% и 21—25% соответственно), подобный тому, который был получен ири использовании хлористого алюминия при —25°- --15°  [c.230]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Активность этих катализаторов обусловлена главным образом той частью хлористого алюминия, которая не связана в форме стабильного комплекса. Добавлением свежего хлористого алюминия к таким жидким комплексам можно поддерживать активность их на постоянном уровне. Из испытаний на продолжительность работы этих катализаторов, приготовляемых иа месте, при использовании в качестве активатора хлористого водорода в процессе, проводимом при 60°, было устаиовлено, что выход алкилата составляет 710 л кг израсходованного хлористого алюминия [47]. Алкилат содержал 80,7% объемн. гексанов и около 12% октанов. Гексаны состояли из 92% 2,3-диметилбутана, 1—2% 2,2-диметилбутана и 7% [c.321]

    Каталитическое алкилирование изопентана о.пефиновыми углеводородами. Алкилирование изопентана изучено значительно менее, чем алкилирование изобутана, главным образом потому, что сам изопентан можно использовать р качестве компонента бензина. Эта реакция в присутствии такого катализатора, как хлористый алюминий, усложняется интенсивно идущим крекингом, что делает затруднительным получение первичных продуктов. [c.329]

    В результате реакции изобутана с хлористым винилом в присутствии хлористою алюминия в качестве основного продукта был получен 1,1-дихлор-3,3-диметклбу ан, выход которого при —10° составлял 40%, а при температуре 25° — 20% [38Ь]. тире/и-Бутрлхлорид (выход около 10%) был побочным продуктом реакции вместе с жидким изопарафином. [c.331]

    Циклогексан. При алкилировании циклогексана этиленом при атмосферном давлении и 50—60° в присутствии хлористого алюминия и хлористого водорода в качестве основных продуктов были получены диметил циклогексаны и тетраметилциклогексаны [22] обнаружено также присутствие 1,3-диметилциклогексана. [c.339]

    Хотя в классической реакции Фриделя—Крафтса использовался галоидалкил с хлористым алюминием, эта реакция уже давно получила более широкое толкование, позволяющее применять иные источники алкильных групп и другие катализаторы. Вместо галоидных алкилов в современной заводской практике повсюду применяют олефины (см. гл. LVII). Имеются данные, что чистые олефины и чистые галоидные металлы пе вступают в реакцию [114, 251]. В заводской практике в качестве промотора вводят хлористый водород или воду. При этих условиях олефины, по-видимому, превращаются в ионы карбония (LXXI)  [c.429]

    К сожалению, несмотря на огромное количество затраченного труда на изучение реакции алкилирования ароматических углеводородов, имеется сравнительно немного кинетических данных по этой реакции. Кроме того, имеющиеся данные получены главным образом с применением ароматических углеводородов в качестве растворителя, поэтому очень мало можно сказать о порядке реакции по отношению к ароматическому углеводороду [245]. Имеется одна недавняя работа по кинетике реакции, катализируемой хлористым алюминием, между 3,4-дихлорбензилхлори-дом и /i-питрохлорбензилхлоридом и производными бензола в растворе нитробензола [47]. [c.439]

    Д п-альпое изучение бензоилированпя беизола проведено Оливером [244]. Исследовались следующие реакции хлористый бензоил и хлористый алюминий с бензолом в качестве растворителя бромистый бензоил и бромистый алюминий с бензолом в качестве растворителя реакция бромистого бензоила и бромистого алюминия с бензолом в сероуглероде в качестве растворителя. В тех случаях, когда ароматический углеподород присутствует в качестве растворителя, кинетика реакции следует первому порядку и константы скорости примерно пропорциональны концентрации катализатора, если последний взят без избытка [ВС0С1] >-[А1Хд]. При избытке катализатора константы скорости быстро возрастут. Последняя система показывает, что в этом случае реакция является реакцией первого порядка и по ароматическому углеводороду, и по хлориду, и катализатору. [c.454]

    Впервые алкилирование беизола этиленом описано Балсоном [1] в 1879 г. В качестве катализатора применялся хлористый алюминий. При условиях, избранных автором, вредш реакции было продолжительным, и в реакцию с образованием этилбензола вступало только 29 % этилена и 31 , о бензола. [c.490]


Смотреть страницы где упоминается термин Хлористый алюминий качество: [c.232]    [c.240]    [c.94]    [c.319]    [c.322]    [c.339]    [c.456]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.521 ]

Справочник по производству хлора каустической соды и основных хлорпродуктов (1976) -- [ c.303 ]




ПОИСК







© 2024 chem21.info Реклама на сайте