Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органическая химия кислоты и их производные

    Угольную кислоту и ее соли обычно изучают в курсе общей или неорганической химии. Однако известно большое число органических производных этой кислоты, которые содержат ковалентные связи. Поэтому эти соединения обычно рассматривают и курсе органической химии. [c.255]

    Угольную кислоту и ее соли изучают в курсе неорганической химии. В курсе органической химии рассматриваются производные угольной кислоты, характерные для всех других органических кислот эфиры, хлорангидриды, амиды и т. д. [c.243]


    Бензол и ряд его гомологов, а затем и большая группа других соединений вскоре после их открытия были выделены в группу ароматических соединений, так как обладали особыми, ароматическими свойствами. Вопрос о причинах этих свойств почти со времени создания Бутлеровым теории химического строения — один из важнейших в теоретической органической химии. Главное затруднение было в том, что формула бензола указывает на высокую ненасыщенность, которая не обнаруживается в реакционной способности этого соединения. Бензол не обесцвечивает бромную воду, не окисляется раствором перманганата, не присоединяет серную кислоту. Лишь в особых и достаточно жестких условиях можно провести реакцию между бензолом и бромом, серной или азотной кислотой, причем в результате этих реакций происходит замещение атомов водорода, а не присоединение, характерное для олефинов. Другая особенность, отличающая ароматические соединения от олефинов,— их высокая устойчивость, способность образоваться даже в жестких пиролитических процессах и сравнительная трудность протекания реакций окисления. Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические. При реакции с азотистой кислотой [c.12]

    Авторами на протяжении многих лет изучалась реакция алкилирования карбоновых кислот, ароматических углеводородов, фенолов и их производных этиленовыми углеводородами. Исследования проводились в присутствии катализаторов на основе фтористого бора, который, как известно, за последние десятилетия стал одним из распространенных катализаторов в органической химии [14] и особенно эффективным оказался в процессах алкилирования. Эти наши исследования и составляют основу данной монографии. В связи с тем, что алкилбензолы и некоторые их производные в настоящее время широко используются в качестве исходных продуктов для различных синтезов через гидроперекиси, в монографию включена специальная глава — Автоокисление алкилароматических углеводородов . Эта глава особенно наглядно показывает значение реакции алкилирования ароматических углеводородов. Она написана главным образом на основе литературных данных и включает наши исследования, выполненные за последние годы. [c.5]

    Карбоновые кислоты были известны еще на заре органической химии, и поэтому они вошли в обиход под своими тривиальными названиями, которые обычно указывают на природный источник данной кислоты или ее производного. Тривиальные названия некоторых наиболее важных карбоновых кислот даны в табл. 19-1. [c.102]


    Окисление углеводородов является одним из основных направлений современного нефтехимического синтеза [1, 2], роль которого в развитии органической химии трудно переоценить. В настоящее время в промышленности осуществляется каталитическое жидкофазное окисление высших парафиновых углеводородов в высшие алифатические спирты и кислоты [3]. В последние годы большой интерес проявляют исследователи к жидкофазному автоокислению углеводородов кислородом воздуха в гидроперекиси При этом особое внимание привлекает автоокисление алкилароматических углеводородов и некоторых их производных в гидроперекиси. Это объясняется легкостью синтеза алкилароматических углеводородов на основе реакции алкилирования, как показано в главе И, легкостью окисления многих из них в гидроперекиси и широким применением последних в качестве инициаторов процессов полимеризации и исходного сырья в производстве мономеров для получения синтетических каучуков, пластических масс, синтетических волокон и других продуктов, важных для народного хозяйства. [c.244]

    Интересные производные полиакриловой кислоты синтезированы Керном, который пытался получить из полиакриловой кислоты поливи-ниламин, используя известный в органической химии метод получения аминов действием щелочей на азиды кислот (по Курциусу)  [c.242]

    В данной главе мы подробно рассмотрим химию карбанионов, включая механизмы реакций, поскольку карбанионы сложных эфиров и других производных карбоновых кислот играют важную роль в синтетической органической химии. Именно сейчас вы познакомитесь с некоторыми наиболее важными методами образования новых углерод-углеродных связей. [c.165]

    В связи с этим нами была поставлена задача более детального исследования окисления анабазина и его производных в различных условиях. При проведении работ были использованы окислители, наиболее часто применяющиеся в органической химии. При этом преследовалась цель, во-первых, изучить продукты окисления анабазина с различными окислителями, ио-вторых, попытаться разработать рациональный метод получения никотиновой кислоты, необходимой для медицинской практики, и, в-третьих, сравнить поведение анабазина в реакции окисления с другими гетероциклическими соединениями. [c.52]

    Методами структурной органической химии было установлено, что простагландины представляют собой оксигенированные производные ненасыщенных жирных кислот. [c.204]

    Нитраты целлюлозы - сложные эфиры целлюлозы и азотной кислоты. Эти эфиры были первыми полученными производными целлюлозы, не потерявшими свое значение и до настоящего времени. В технике их часто называют нитроцеллюлозой, хотя с точки зрения органической химии [c.595]

    Органические соединения серы—один из наиболее обширных разделов органической химии, и значение их весьма велико. По обилию экспериментального материала органические соединения серы среди других элементоорганических соединений занимают одно из первых мест. Они находят применение в самыу разнообразных отраслях промышленности. Особенно велико значение сульфокислот и их производных соли некоторых ароматических и алифатических кислот являются поверхностноактивными соединениями и находят применение в качестве моющих средств, пенообразователей и т. д., ароматические сульфокислоты и их различные производные являются промежуточными продуктами при синтезе красителей, фармацевтических препаратов и т. п. [c.5]

    В нротивополоншость указанному порядку превращения исходного вещества нефти от сложных соединений к простым некоторые авторы (В. А. Успенский и О. А. Радченко) выдвинули иной порядок превращений. Исходным материалом нефти считаются уже готовые углеводороды, преимущественно метанового ряда, и в частности парафино], содержащиеся в незначительных количествах в организмах, главным образом растительные и жирные кислоты или их производные, после декарбоксилирования превращающиеся в метановые углеводороды. Таким образом, авторы вправе, со своей точки зрения, называть парафиновую нефть разностью, наиболее сохранившей черты первичного тина. Беспарафинрвые нефти представляют собой, по мнению этих авторов, вторичный продукт окислительного метаморфизма. В частности, циклические углеводороды, характеризующие нафтеновые нефтл, являются результатом относительной концентрации тех циклических углеводородов, которые присутствовали еще в разности, наиболее сохранившей черты первичного типа и не игравшей там значительной роли. Исчезновение метановых углеводородов авторы видят, во-первых, в уничтожении микроорганизмами и, во-вторых, в превращении их в циклические углеводороды. Допустим, что первичная нефть содержала 80% метановых углеводородов и 20% циклических. Для того, чтобы получилась преимущественно циклическая нефть с 80% соответствующих углеводородов, необ ходимо, чтобы нефть потеряла около 94% своих метановых углеводородов или около 75% своей массы. Так как это весьма мало вероятно, следует предполагать, что все дело не столько в уничтожении метановых углеводородов, сколько в окислительном метаморфизме, переводящем метановые углеводороды в циклические, в частности в нафтеновые. Одпако в органической химии совершенно неизвестны способы циклизации метановых углеводородов в нафтеновые, по крайней мере в условиях, мыслимых в подземной лаборатории, не говоря уже о том, что подобиая реакция противоречила бы термодинамике. Поэтому упор в этом случае делается на различные микробиальные процессы, механизм которых, впрочем, остается совершенно неизвестным. Прямые опыты микробиологической обработки нефти в условиях, максимально приближенных к условиям нефтяного горизонта, до сих пор не дали результатов, подтверждающих предположения, скорее даже эти результаты противоречат гипотетическим представлениям сто- [c.204]


    Основным элементом, входящим в состав органических соединений, является углерод. Поэтому А. М. Бутлеров определил органическую химию как химию соединений углерода. Однако существуют простые вещества, содержащие углерод (СО, СО2, соли синильной кислоты, СЗа), которые относят к неорганическим соединениям и изучают их в курсе общей или неорганической химии. Учитывая это, более точно органическую химию следует определять как химию углеводородов и их производных (К. Шорлем-мер). [c.5]

    Теория, объяснявшая образование органических соединений вмешательством жизненной силы , получила название витализма. В течение некоторого времени она пользовалась популярностью, хотя уже на рубеже XIX—XX вв. были известны факты, противоречащие этой 1еории. Так, еще в 1783 г. К. Шееле получил из неорганических веществ (угля, нашатыря и поташа) цианистый калий — соль синильной кислоты, весьма распространенной в мире растений. Казалось, это должно было поколебать веру в жизненную силу , но случилось совсем иначе синтетическое получение производных синильной кислоты послужило одним из поводов для того, чтобы изгнать синильную кислоту и ее соли из органической химии и отнести их к неорганическим веществам. [c.5]

    О реакционной способностн производных карбоновых кислот в реакциях ацилирования рассказывается в учебнике (Перекалин В. В., Зонис С. А. Органическая химия. М., 1982, с. 158). [c.230]

    ЦИАНАТЫ — соли циановой кислоты HO N. Ц. щелочных и щелочноземельных металлов растворимы в воде. Ц. калия и натрия — кристаллические вещества, реагируют с минеральными кислотами, образуя циановую кислоту. Ц. применяют в органической химии для получения мочевины и ее производных, для изготовления защитных покрытий на металлах. Ц. менее токсичны, чем цианиды. [c.283]

    Ацетоуксусный эфир. Из производных кетонокислот наибольшее значение имеет этиловый эфир ацетоуксусной кислоты СНз—СО—СНа—СООС2Н5, называемый обычно ацетоуксусный эфиром. Он находит обширное применение в органической химии для синтеза и представляе большой теоретический интерес. [c.306]

    Студентам, изучающим курс органической химии по сокращенному варианту, известны в конечном результате не вое типы функциональных групп и дазке не все функциональные производные карбонильных соединений и карбоновых кислот. Для незнакомых функциональных групп важно уметь быстро находить аналогии с главными классами органических соединений. Для оценки изменения электронного состояния атомов углеродов, входящих в состав сложных функциональных групп, главную роль, конечно, играет анализ электронных эффектов окружающих элементов. Однако для быстрой аналогии с главными типами углеродсодержащих функциональных групп полезно оценивать степени окисления атомов углерода. Соединения с атомами углерода в одинаковой степени окисления, как правило, или относятся к одному и тому же классу органических соединений, или являются функциональными производными одного и того же класса органических соединений. [c.6]

    Органическая химия — это химия соединений углерода, за исключением оксидов углерода, угольный кислоты и ее солей. Она возникла в начале XIX века, хотя органические вещества были известны очень давно. Объекты изучения органической химии — углеводороды и их производные. Сейчас известно более 3 миллионов различных органических соединений, и их количество растет с каждым днем. Органические соединения имеют большое практическое значение. Они широко используются в топливной промышленности, в производстве красителей, искусственных волокон, синтетических каучуков, пластмасс, взрывчатых веществ, инсектицидов. Благодаря успехам химии синтезированы важнейшие лекарственные препараты сульфаниламиды,. некоторые алкаллоиды, антибиотики, витамины и др. Синтез высокомолекулярных органических соединений обеспечил бурное развитие хирургии протезирования. Пластмассы широко используются в ортопедии, травматологии и др. [c.86]

    Дано теоретическое обоснование меггодов получения синтонов литийорпанических оксигенатов. Разработаны способы получения литиевых производных а-алкил-, а-диалкил-, а-циклоалкил-, а-алкил-а-циклоалкил-карбоновых кислот и литиевых производных N,N-диaлкилaминoмeтилфeнoлoв. Результаты работ используются в преподавании дисциплины Прикладная органическая химия для студентов, обучающихся по специальности Химическая технология органических ве1цеств . [c.95]

    Фридрих Вёлер (Р. и оЬ1ег) —немецкий химик (1800—1882), ученик Я. Берцелиуса. Среди многочисленных работ Вёлера в области органической химии отметим синтез мочевины (1828), получение и исследование производных бензоила (совместно с Ю. Либихом. 1832), а также мочевой кислоты. [c.414]

    В конце прошлого столетия крупному русскод1у химику М. И. Коновалову [26] впервые удалось показать возможность введения нитрогруппы в углеводороды жирного ряда и в боковую цепь жирноароматических углеводородов прямьш нитрованием азотной кислотой. На основе этих работ и возникли современйые методы промышленного нитрования парафиновых углеводородов, которые привели к созданию новой отрасли промышленности органической химии — производству нитропарафинов и их многочисленных производных. [c.12]

    С развитием органической химии и, в частности, химии красителей возникли и другие теории, объясняющие зависимость цветности соединений от нх строения, в частности теория координационно ненасыщенных атомов (Байера, 1902), связанная с яатением галохромии (бесцветные соединения, например трифенилкарбинол, при действии кислоты образует окрашенные соли, многие карбонильные соединения, например фенантренхинон, приобретают красную окраску под влиянием кислот или солей — РеС1з. А1С1з и др.), хнноидная теория цветности, рассматривающая красители, как производные хинонов. [c.292]

    Но, как оказалось. Природа очень хо-рощо "изучила" классическую органическую химию, из которой мы знаем, что карбанионный центр наиболее легко генерируется в производных малоновой кислоты—даже слабые основания отщепляют протон от метиленовой группы малонового эфира. Поэтому второй путь образования ацетоацетил-ЗСоА выглядит так ацетил-ЗсоА переводится в мало-нил-8СоА активированный основанием малонил-ЗСоА атакует вторую, немо-дифицированную, молекулу ацетил-ЗСоА, образуя малоно-ацетил-ЗСоА  [c.132]

    Как мы уже отметили выше, абсолютное большинство терпенов являются хиральными молекулами, а проблема асимметрического синтеза — одна из узловых в органической химии вообще, а в химии природных соединений в особенности. Отсюда и возникло одно из плодотворных решений этой задачи — на базе бициклических монотерпенов получены целые серии асимметрических катализаторов и реагентов. Наиболее перспективными оказались борпроизвод-ные пинана (используемые как хи-ральные кислоты Льюиса в реакциях асимметрического гидробориро-вания) и производные камфоры [c.156]

    Сложные эфиры — одни из наиболее распространенных производных карбоновых кислот. Механизмы их образования и гидролиза слуя или объектом многочисленных исследований. Мы не ошибемся, если скажем, что современная органическая химии своим развитием во многом обязана изучению сложных эфиров. (Гидролиз эфиров — это реакция сложного эфира с водой с образованием карбоновой ки Jгoты и спирта.) [c.117]

    Пиридин и его производные широко применяются в синтетической органической химии. Кроме того, некоторые очень простые производные пиридина играют важную роль в жизнедеятельности нашего организма. Так, никотиновая кислота (3-пиридинкарбоновая кислота и ее амид) является витами-но>1, а изониазид (тубазид) применяется для лечения туберкулеза. [c.217]

    В настоящей книге рассматривается несколько основных типов природных соединений, играющих решающую роль в нормальной жизнедеятельности организмов — белки, углеводы, нуклеотиды и стероиды. Выбор именно этих разделов определился не только их значимостью, но и oт yт твиe i современной общей обзорной литературы по этим вопросам в СССР, а в некоторых случаях (например нуклеотиды) и за рубежом. Белки являются основным субстратом животных организмов, катализаторами важнейших жизненных процессов, а обмен белка лежит в основе всех процессов жизнедеятельности Углеводы — главный энергетический ресурс всех живых организмов и основной субстрат растительных организмов, а в виде своих многочисленных производных углеводы входят в сложные комплексные соединения с белками и липидами, имеющие большое биологическое значение. Исключительная роль нуклеотидов вскрыта исследованиями последних лет, когда удалось показать, что именно они являются тем химическим материалом, который обеспечивает передачу первичного биологического кода, определяющим далее в сложной цепи превращений весь комплекс наследственных признаков. Биологическая роль стероидов весьма разнообразна к этому типу природных соединений относятся важнейшие гормоны, желчные кислоты, холестерин мозговой ткани и т. д. Существенно, что не только биологическая значимость, но и химия рассматриваемых в этой книге соединений весьма разнообразна и может служить яркой иллюстрацией решения многих интереснейших и сложнейших проблем органической химии, в особенности стереохимических вопросов. [c.4]

    Преобладающее число карбоксизащитных групп производится на основе первичных, вторичных и третичных спиртов. Для приготовления эфиров аминокислот служат методы, нзвестнЬ1е из органической химии, причем исходят либо из свободной аминокислоты, либо из N-зaмeщeннoгo производного амин кислоты. [c.116]

    Из схемы 9.1 очевидно, что фундаментом всей органической химии являются углеводороды. От алканов происходят все остальные классы углеводородов. Из углеводородов в результате химических реакций замещения Н-атома С-Н-связи и присоединения реагентов по л-связям возникают основные классы функциональных производных углеводородов — галогенопроизводные, сульфопроиз-водные, нитросоединения, спирты, простые и сложные эфиры, альдегиды, кегоны и карбоновые кислоты. Дальнейшее химическое преобразование (химический дизайн) этих производных за счет замещения или химического видоизменения функциональных групп создает все труднообозримое многообразие полифунк-ционапьных органических соединений, в том числе аминокислоты, пептиды, и белки, жиры и углеводы, гетероциклы различной сложности, витамины, гормоны, нуклеотиды и нуклеиновые кислоты, ферменты. [c.317]

    Оксиды углерода, соли угольной кислоты, карбиды изучаются в курсах неорганической химии. Нередко там же рассматриваются как неорганические соединения СОСЬ, 0(NH2)2, НО— =N и NH= =0, OS, S2 и ряд других элементоуглеродистых соединений. Однако все производные угольной кислоты, содержащие углеводородные остатки, должны быть рассмотрены в курсе органической химии в связи со всеми другими ее соединениями. [c.622]

    Все пути синтеза пантотеновой кислоты в основном сводятся к конденсации двух компонентов а,у-Диэкси-р,р-диметилмасляной кислоты, ее эфиров или производных ср-аланином, его эфирами и солями. Сущность реакции состоит в образовании а.мидной связи между карбонильным атомом углерода и аминогруппой, поэтому она может быть осуществлена обычными методами органической химии, применяемыми для получения амидов кислот. Первоначальный синтез пантотеновой кислоты проведен конденсацией синтетического этилового эфира р-аланина с хлорангидридом ацетилди-оксикарбоновой кислоты, выделенной из гидролизата пантотеновой кислоты, с последующим точным гидролизом продукта конденсации [25] получен невысокий выход. [c.60]

    Простейшие тиофены [1] представляют собой устойчивые жидкости, по температуре кипения и даже по запаху сильно напоминающие бензол. Они сопровождают бензол и его производные в продуктах перегонки каменноугольной смолы. Открытие тиофена в бензольной фракции каменноугольной смолы связано с одним из классических курьезов в органической химии. В прежние времена для характеристики химических соединений широко применялись цветные реакции. Было, например, известно, что при нагревании бензола с изатином и концентрированной серной кислотой появляется синяя окраска (разд. 14.1.1.7). В 1882 г. В.Мейер читал студентам последнего курса лекцию, сопровождающуюся демонстрацией опытов. К восторгу всех присутствующих, за исключением самого профессора и особенно его ассистента, опыт не удался. При расследовании этого инцидента выяснилось, что у ассистента закончился запас коммерческого бензола и он приготовил бензол путем декарбоксилирования бензойной кислоты. Стало ясно, что цветная реакция характерна не для самого бензола, а для содержащейся в коммерческом бензоле примеси. При дальнейших исследованиях Мейеру удалось выделить эту примесь и определить как неизвестную ранее циклическую систему, которой он дал имя тиофен от греческих слов гкеюп (сера) и ркато (светящийся). Впервые корень этого слова был использован для названия фенола, поскольку он был побочным продуктом при производстве светильного газа из каменноугольной смолы. [c.352]

    Исследования мои и сотрудников на кафедре органической химии Московского государственного университета им. М. В. Ломоносова и в Институте элементоорганических соединений начаты в 1954 г. и продолжаются до настоящего времени- Первое десятилетие они были сосредоточены только на органической химии ферроцена, в которую было внесено много нового. Так, были открыты многочисленные реакции электрофильного замещения, нротофильного замещения и радикального замещения ферроцена, роднящие последний с сунерароматическими системами типа фурана. Были найдены методы синтеза галогенпроизводных, аминов и оксисоединений и их многочисленных производных через ферроценилборные кислоты. [c.7]

    В органической химии известны соединения, являющиеся производными трехосновной фосфористой кислоты Н3РО1. [c.428]

    Пиримидин (I), известный также под названием Л1-диазина, является родоначальным соединением большой группы гетероциклических веществ, с давных пор привлекавших большое внимание. Относящиеся к этой груп- пе соединения известны с первых лет истории органической химии в качестве продуктов расщепления мочевой кислоты, однако систематическое изучение их началось с работ Пиннера [1], впервые применившего название пиримидин к незамещенному родоначальному веществу. Производные пиримидина играют жизненно важную роль во многих биологических процессах циклическая система пиримидина присутствует, например, в нуклеиновых кислотах, в некоторых витаминах и коэнзимах, в мочевой кислоте и в других пуринах. Многие синтетические представители этой группы соединений имеют важное значение в качестве лекарственных веществ (например, производные барбитуровой кислоты), а также химиотерапевтических препаратов (например, сульфадиазин). [c.195]


Смотреть страницы где упоминается термин Органическая химия кислоты и их производные: [c.9]    [c.59]    [c.198]    [c.380]    [c.99]    [c.102]    [c.22]    [c.86]    [c.134]    [c.134]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.7 , c.43 , c.48 , c.137 , c.153 , c.164 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота органическая

Органическая химия



© 2025 chem21.info Реклама на сайте