Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость водорода, азота и кислорода

    ГОСТ 2159-43. Смазки консистентные. Определение механических примесей, не растворимых в соляной кислоте и несгораемых. 7022 ГОСТ 2177-48. Нефтепродукты светлые. Метод определения фракционного состава. Взамен ГОСТ 2177-43. 7023 ГОСТ 2267-43. Порошок, таблетки и жидкие концентраты, содержащие витамин С , полученные из плодов и концентрата плодов шиповника. Отбор проб и методы испытаний. 7024 ГОСТ 2401-47. Нефти. Метод определения содержания хлористых солей. Взамен ГОСТ 2401-44. 7025 ГОСТ 2408-49. Угли (каменные, бурые), антрацит, горючие сланцы и торф. Методы определения углерода, водорода, азота и кислорода. Взамен ГОСТ 2408-44. 7026 ГОСТ 2477-44. Нефтепродукты. Количественное определение содержания воды. Взамен ОСТ ВКС 7872, М. И. 19а-35 7027 ГОСТ 2478-47. Масла смазочные отработанные. Метод определения содержания горючего в автомобильных и авиационных маслах. Взамен ГОСТ 2478-44. 7028 ГОСТ 2550-44. Нефтепродукты. Определение смолистых веществ сернокислотным способом. 7029 ГОСТ 2661-44. Угли каменные и антрацит. Определение содержания золы ускоренным методом (рекомендуемый). 7030 ГОСТ 2816-45. Бензины. Метод определения содержания тетраэтилсвинца и этиловой жидкости содовым способом (рекомендуемый). 7031 ГОСТ 2862-47. Нефтепродукты. Метод анализа нагара. Взамен ГОСТ 2862-45. 7032 ГОСТ 3624-47. Молоко и молочные продукты. Методы определения кислотности. Взамен ОСТ ВКС 7761 в части методов определения кислотности. 7033 ГОСТ 3626-47. Молоко и молочные продукты. Методы определения влаги и сухого вещества. Взамен ОСТ ВКС 7761 в части методов определения содержания влаги и сухого вещества. 7034 ГОСТ 3627-47. Молочные продукты. Методы определения содержания хлористого натрия (поваренной соли). Взамен ОСТ ВКС 7761 в части методов определения содержания хлористого натрия. 7035 ГОСТ 3628-47. Молочные продукты. Методы определения содержания сахара. Взамен ОСТ ВКС 7761 в части методов определения содержания сахара. 7036 ГОСТ 3629-47. Молочные продукты. Метод определения содержания спирта (алкоголя). Взамен ОСТ ВКС 7761 в части методов определения содержания спирта. [c.269]


Рис. 6-3 Растворимость водорода, азота и кислорода в жидком <лоре Рис. 6-3 <a href="/info/89871">Растворимость водорода</a>, азота и кислорода в жидком <лоре
    Значительное влияние на растворимость газов в воде оказывает давление. Количество водорода, азота, окиси углерода и кислорода, растворяющихся в воде, возрастает прямо пропорционально увеличению их парциального давления, т. е. эти газы подчиняются закону Генри. С увеличением давления сверх 5 ат растворимость СО2 как реального газа начинает заметно отклоняться от закона Генри. Вследствие этого для определения растворимости двуокиси углерода в воде под повышенным давлением необходимо учитывать летучесть СО2. [c.155]

    Растворимость водорода, кислорода и азота в жидком хлоре невелика. Двуокись углерода, обычно присутствующая в техническом хлоре, подвергаемом сжижению, сравнительно хорошо растворима в жидком хлоре. В табл. -3 приведена взаимная растворимость хлора и двуокиси углерода. [c.312]

    Главные компоненты органических соединений — углерод, водород и кислород второстепенные элементы — азот, фосфор, сера и некоторые металлы. Каж дый атом углерода имеет четыре ковалентные связи. Некоторые органические вещества — природного происхождения, например волокна растений и ткани животных другие могут быть получены в результате реакций синтеза (резина, пластмассы и т, д.) или процессов ферментации (спирты, кислоты, антибиотики и др.). В отличие от неорганических соединений органические веп ества обычно горят, имеют высокую молекулярную массу, в очень небольшой степени растворимы в воде, в реакции вступают чаще в молекулярной форме, чем в ионной, являются источником пищи животных и подвержены распаду под воздействием микроорганизмов. [c.20]

    По растворимости компоненты пирогаза можно разделить на три группы. К первой относятся газы, растворимость которых невелика это водород, азот, кислород, окись углерода и др. Растворимость СОа в несколько раз меньше растворимости ацетилена. Содержание компонентов первой группы в пирогазе достигает десятков процентов (см. табл. Х-1). [c.457]


    Растворимость водорода, азота, оксида углерода, метана и кислорода в растворе этаноламина значительно ниже растворимости диоксида углерода и сероводорода. Этим объясняются ничтожные потери водорода при очистке растворами этаноламина (особенно в случае абсорбции при атмосферном давлении). Однако водород и оксид углерода, попадая в раствор, в дальнейшем загрязняют диоксид углерода. В том случае, если последний применяется в синтезе карбамида, целесообразно предварительно удалять из него горючие примеси. [c.34]

    Величина pH растворов нитрата гадолиния не зависит от продолжительности работы петли, на которой проводились эксперименты и изменения концентрации азота, кислорода и водорода. Растворённый азот не вступает в радиационно-химические реакции с продуктами радиолиза воды, заметно изменяющими химический состав раствора. Концентрация газообразных продуктов радиолиза воды достигала предела растворимости при заданном давлении, и наблюдалось непрерывное выделение газовой фазы в контуре петли. [c.215]

    Смеси газов не конденсируются в жидком воздухе или жидком азоте [например, смеси водорода, азота, кислорода или окиси углерода (смеси, содержащие большие количества метана, также относятся к этой категории)]. Выше указывалось, что в этом случае газожидкостная хроматография непригодна из-за слабой растворимости. компонентов. Ниже (в гл. 8) показано, что очень хорошие результаты при разделении таких смесей можно получить, применив адсорбционную хроматографию. [c.90]

    Позднее на основании тщательно проведенных экспериментов было показано что растворимость водорода, азота и кислорода в каучуках с повышением температуры в интервале О— 100° незначительно увеличивается, что находится в соответствии с данными о растворимости этих газов в органических жидкостях. [c.302]

    По растворимости компоненты пирогаза можно разделить на три группы. К первой относятся газы, растворимость которых невелика это водород, азот, кислород, окись углерода и другие (см. табл. Х-2). 201 361 [c.361]

    При аналитической классификации анионов различают 1) элементные анионы 2) комплексные кислородсодержащие анионы (сульфат, нитрат) 3) группу аннонов органических кислот (формиат, ацетат, оксалат, тартрат, цитрат) 4) группу анионов, содержащих, кроме кислорода и водорода, азот, серу, железо, кобальт, например, СМ , N8 , [Ре(СЫ)в1 , [Fe( N)в] , [Со(Ы02)вН . Сопоставляя свойства кислородсодержащих кислот и их анионов, можно видеть сходство свойств элементов по диагональным направлениям таблицы Менделеева. Например, химико-аналитическое сходство проявляют сульфид-и фторид-ионы, которые расположены по второй диагонали (ртуть — сера, см. выше). Подругой диагонали (см. таблицу на форзаце) сходны борат- и силикат-ионы по осаждаемости кальциевыми, серебряными и свинцовыми солями. По параллельной диагонали сходны карбонаты и фосфаты, например, по величине серебряных солей. С другой стороны, сходство углерода и кремния как элементов IV группы таблицы Менделеева проявляется в сходстве карбонатов с силикатами. Бораты, карбонаты, силикаты и фосфаты осаждаются в виде серебряных солей, мало растворимых в воде, но растворимых в уксусной и азотной кислотах. [c.43]

    САВ представляют собой сложную многокомпонентную исключительно полидисперсную по молекулярной массе смесь высокомолекулярных углеводородов и гетеросоединений, включающих, кроме углерода и водорода, серу, азот, кислород и металлы, такие как ванадий, никель, железо, молибден и т. д. Выделение индивидуальных САВ из нефтей и ТНО исключительно сложно. Молекулярная структура их до сих пор точно не установлена. Современный уровень знаний и возможности инструментальных физико-химических методов исследований (например, n-d-М-метод, рентгеноструктурная, ЭПР- и ЯМР-спектро-скопия, электронная микроскопия, растворимость и т. д.) позволяют лишь дать вероятностное представление о структурной организации, установить количество конденсированных нафтено-ароматических и других характеристик и построить среднестатистические модели гипотетических молекул смол и асфальтенов. [c.45]

    Большую опасность баллоны со сжатым газом представляют во время пожара, поскольку от нагревания повышается давление газа внутри баллона. При температуре 600° остаточная прочность баллонов составляет 30—40% начальной. Наиболее опасны при пожаре баллоны с ацетиленом и сжиженными газами. При критической температуре в баллонах со сжатыми газами резко повышается давление, так как весь газ переходит в газообразное состояние. В ацетиленовых баллонах при температуре 70—75° наступает резкий скачок давления, поскольку уменьшается растворимость ацетилена в ацетоне. При 100° ацетон совершенно не растворяет ацетилена. Весь ацетилен выделяется из ацетона и давление возрастает до 200 ат и выше. Разрыв ацетиленового баллона происходит при температуре около 100°. Баллоны со сжатыми газами (кислород, водород, азот) выдерживают температуру порядка 200—300° и разрываются при 400—500°. [c.253]


    Большинство органических соединений растворяется в безводном фтористом водороде - . Наименее растворимы, вероятно, фторуглероды, полностью лишенные основных свойств - . Все соединения, содержащие азот, кислород и серу, очень хорошо растворяются в безводном фтористом водороде, поскольку указанные атомы являются акцепторами протона. Введение фтора в эти соединения понижает их растворимость, потому что при этом снижаются их основные свойства. [c.512]

    Наряду с типичными для органических веществ элементами — углеродом, водородом и кислородом — в них могут содержаться также азот, сера, галогены. Для обнаружения этих элементов вещество разрушают металлическим натрием, переводя их в растворимую форму  [c.329]

    Значительное влияние на растворимость газов в воде оказывает давление. Количество водорода, азота, оксида углерода и кислорода, растворяющихся в воде, возрастает прямо пропорционально увеличению их парциального давления, т.е. эти газы подчиняются закону Генри. Выбор наиболее выгодного давления для очистки газа водой имеет большое значение. С увеличением давления возрастает растворимость СО2, вследствие чего улучшается очистка газа, снижается расход воды и уменьшаются габариты оборудования. Однако при использовании высоких давлений увеличивается расход энергии, поэтому на практике для удаления СО2 из газов применяют давление в пределах 1,6-3,0 МПа. [c.36]

    Для установления возможности применения такого рода анализа к системам металл — водород, металл — кислород и металл — азот необходимо установить области существования а-твердых растворов, т. е. величину растворимости этих трех элементов в металлах и кривые изменения постоянных решетки растворителя. Эталоны, приготовляемые для фазового анализа, должны быть однородными по составу и пе должны содержать примесей, искажающих решетку растворителя. [c.124]

    Проницаемость, сорбция и диффузия сильно зависят от природы газа. Из всех газов, применяющихся в технологии губчатой резины, наименьшая проницаемость наблюдается для азота (табл. 8). Растворимость азота более чем в 3 раза превышает растворимость водорода, хотя проницаемость резины по отношению к водороду в 6 раз больше, чем для азота. Для двуокиси углерода проницаемость в 18 раз и растворимость в 28 раз выше, чем для азота. Значительной проницаемостью и растворимостью в резине обладает аммиак, для которого эти показатели выше, чем для азота, соответственно в 50 и 266 раз. Проницаемость резины по отношению к воздуху близка к ее проницаемости по отношению к азоту, в то время как по отношению к кислороду и инертным газам (Не, Аг) она несколько больше (см. табл. 8). [c.48]

    Древесина, т. е. стенки омертвевших растительных клеток, состоит из трех групп веществ целлюлозы, гемицеллюлоз и лигнина. К этим веществам в небольших количествах примешиваются растворимые в воде сахара, пектиновые вещества, дубильные вещества, смолы, жиры и азотистые органические соединения. Таким образом, химический состав древесины очень сложен и неодинаков у разных пород деревьев, хотя элементарный состав древесины разных пород почти одинаков. Абсолютно сухая древесина содержит около 50% углерода, 6% водорода, 43% кислорода и 0,1% азота. Из этих элементов образуются различные вещества, входящие в состав органической части древесины. Кроме того, в состав древесины входит от 0,3 до 1 % минеральных веществ (зола). Главнейшие вещества золы — углекислые соли кальция, калия и натрия. Кроме того, в ней содержатся углекислые, кремнекислые и фосфорнокислые соли магния и железа. [c.8]

    Для удаления растворенного кислорода через раствор пропускают полярографически инертный газ (водород, азот, двуокись углерода). Поскольку растворимость газа пропорциональна его парциальному давлению (закон Генри), по мере уменьшения содержания кислорода в газовой фазе концентрация в растворе также падает. Для полного удаления кислорода достаточно пропускать инертный газ 8—12 мин. Следует отметить, что двуокись углерода можно применять, только если компоненты раствора не реагируют с ней. При тех же условиях можно использовать для удаления кислорода некоторые восстановители, например сульфит натрия или метол. [c.51]

    Различают газообразные вещества хорошо растворимые, плохо растворимые и практически нерастворимые в воде. Хорошо растворимы аммиак и хлористый водород. Азот и водород практически нерастворимы в воде. При повышении температуры растворимость газов в воде уменьшается. На рисунке 38 показаны кривые растворимости кислорода, водо-/00 рода и азота. Кислород растворим в воде лучше, чем азот или водород. Это имеет большое значение для обитателей (животных и растений) водной дышащих растворенным в воде кислородом. Кипячением [c.116]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Как и всякое физико-химическое равновесие, равновесие между раствором и осадком, определяющее растворимость, зависит от температуры если процесс растворения эндотермич-е-ский, то растворимость возрастает с повышение1М температуры, если он экзотермический, то растворимость уменьшается с температурой. Так, растворение большинства солей в воде — эндотермический процесс, соответственно их растворимость растет с повышением температуры. Напротив, газы обычно растворяются в воде с выделением тепла (хлороводород, аммиак, водород, азот, кислород), поэтому их растворимость уменьшается с увеличением температуры. [c.85]

    По растворимости в ДМФ или МП компоненты пирогаза удобно разделить на три группы. К первой относятся газы, растворимость которых невелика,— это водород, азот, кислород, метан, окись углерода вплоть до двуокиси углерода, растворимость которой еще в несколько раз меньше, чем растворимость ацетилена. Ко второй группе можно отнести компоненты, растворимость которых больше, чем у двуокиси углерода, но меньше, чем у ацетилена (например, пропадиен и некоторые олефины). Третья группа включает компоненты, растворимость которых превышает растворимость i ацетилена метилацетилен, винилацетилен, диацетилен, а также дивйнил и др. Основываясь на различной растворимости перечисленных выше групп компонентов, представляется возможным наиболее просто осуществить выделение ацетилена из пирогаза. [c.373]

    Ван Амеронген обнаружил отчетливо выраженное избирательное влияние степени полярности полимера на растворимость газа на примере бутадиен-акрило-нитрильных сополимеров. С увеличением содержания акрилопитрила в сополимере быстро возрастает растворимость двуокиси углерода, в то время как растворимость водорода, азота и кислорода уменьшается. [c.293]

    Сланцевое масло в противополон<ность нефти не яиляется природным продуктом. Оно образуется при пиролизе органической части горючих сланцев его состав в значительной степони зависит от условий производства. Горючие сланцы состоят из различных неорганических компонентов, в которых обычно преобладает глина, связанная с органическими компонентами. Органическая часть горючих сланцев ограниченно растворима в обычных растворителях в ее состав входят углерод, водород, сера, кислород и азот. При нагревании горючие сланцы разлагаются и выделяют газ, сланцевое масло и углеродистый остаток (кокс), который остается в отработанном сланце. Получающееся сланцевое масло иапоминает нефть, так как состоит из углеводородов и их производных, содержащих серу, азот и кислород. Неуглеводородных компонентов в сланцевом масле значительно больше, чем в нефти, углеводородная ше часть содержит менее насыщенные соединения, чем углеводородная часть нефти по составу она напоминает, как и можно было ожидать, продукты термического крекинга. [c.60]

    По мере протекания биохимической реакции изменяются концентрации комнонентоз, которые способны связывать ионы водорода. В системах с чистым кислородом и анаэробных фильтрах такими компонентами являются растворимый органический азот Норг, аммонийный азот МкИд, летучие кислоты (НА), [c.337]

    Качественный элементарный анализ органических веществ. При исследовании качественного состава чистых органических соединений чаще всего приходится встречаться с небольшим числом элементов. Это — углерод, водород, кислород, азот, сера, галоиды и фосфор. Открытие всех этих элементов, кроме водорода и кислорода, основано на переводе их в растворимые в воде ионизирующиеся соединения, анализируемые с применением соответствующих реакций, хорошо известных из неорганической химии. Водород же открывается в виде воды. [c.36]

    АЛКАЛОИДЫ. Азотсодержащие органические соединения природного, чаще растительного происхождения, большей частью сложного состава, имеющие основной характер. Большинство А. состоит из углерода, водорода, азота и кислорода, но имеются и А., не содержащие кислорода. Добываются из растений, особенно богаты ими виды семейств лютиковых, маковых и бобовых. Для большинства А. характерно сильное физиологическое действие на животный организм, поэтому многие из них применяются в качестве лекарственных средств. Трудно растворимы в воде, соли их легко растворимы. К главнейшим А. относятся ареколин, атропин, ве-ратрин (раздражающее, рвотное и усиливающее сокращение мускулатуры), кофеин, кодеин (успокаивающее кашель и дыхание), кокаин (обезболивающее), лобелии, морфин, папаверин (болеутоляющее и расслабляющее спазм кишечника), хинин (жаропонижающее и противомалярийное), эфедрин (тонизирующее и улучшающее работу сердца), алкалоиды спорыньи (усиливающие сокращение мускулатуры матки и оказывающие сосудосуживающее действие), эрготамин, эргометрин, эрготоненин. Некоторые А. используются в качестве инсектицидов см. Анабазин-сульфат, Никотин-сульфат. См. также Колхицин. [c.19]


Смотреть страницы где упоминается термин Растворимость водорода, азота и кислорода: [c.76]    [c.273]    [c.218]    [c.96]    [c.10]    [c.88]    [c.218]    [c.509]    [c.320]    [c.370]    [c.566]    [c.62]    [c.243]    [c.501]    [c.118]    [c.57]    [c.177]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Азот водород

Азот кислород

БГК и кислорода и водорода

Растворимость азота



© 2025 chem21.info Реклама на сайте