Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение содержания нитрат-ионов

    Ускоренный колориметрический метод определения с салициловой кислотой. Этот метод основан на реакции между салициловой кислотой и нитрат-ионами с образованием нитропроизводных фенола, которые образуют со щелочами соединения, окрашенные в желтый цвет. Перед производством определения содержания нитрат-ионов исследуемая вода должна быть соответствующим образом подготовлена. Подготовка заключается в следующем  [c.125]


    Эффективность автоматизированных систем обработки эколого-ана-литической информации заметно повьппается при использовании автоматических станций контроля загрязнений воды и воздуха. Локальные автоматизированные системы контроля загрязнений воздуха созданы в Москве, Санкт-Петербурге, Челябинске, Нижнем Новгороде, Стерлита-макс, Уфе и других городах. Проводятся опытные испытания станций автоматизированного контроля качества воды в местах сброса сточных вод и водозаборах. Созданы приборы для непрерьшного определения оксидов азота, серы и углерода, озона, аммиака, хлора и летучих углеводородов. На автоматизированных станциях контроля загрязнений воды измеряют температуру, pH, электропроводность, содержание кислорода, ионов хлора, фтора, меди, нитратов и т.п. [c.27]

    Этот метод обладает большой чувствительностью и удовлетворительной воспроизводимостью. Интенсивность окраски определяют фотометрически или визуально. При фотометрическом определении содержание нитрат-ионов определяют по калибровочной кривой, которую периодически проверяют, а при замене одного из реактивов реактивом другой фасовки строят заново. [c.81]

    Расчет. Содержание нитрат-ионов при колориметрическом определении в мг л (х) или в мг-экв л у) вычисляют по формулам  [c.145]

    Нитратов определение в питьевой воде. Содержание нитрат-ионов в питьевой воде не должно превышать допустимого уровня. Концентрацию нитрат-ионов устанавливают, используя нитратный электрод 93-07 и электрод сравнения 90-02. [c.79]

    При фотометрическом определении содержание нитрат-ионов вычисляют по формуле  [c.175]

    Точность потенциометрического метода определения нитрат-ионов [54] с помощью ион-селективных электродов не уступает точности колориметрического метода [55]. Ошибка потенциометрического метода определения составляет 3—5% при содержании нитрат-ионов (в пересчете на азот) в пробах (2—30) 10 % [23, 54]. [c.148]

    Различают весовой и объемный химический анализ. Весовой, нли гравиметрический, анализ основан на полном (количественном) выделении какого-либо компонента из анализируемого образца в виде строго определенного вещества и последующем точном взвешивании его. Пусть, например, требуется проанализировать образец нитрата бария на содержание основного вещества. Точную навеску образца растворяют в воде и осаждают ионы бария в виде сульфата бария, добавляя к раствору серную кислоту в избытке. Осадок отфильтровывают, промывают, сушат и взвешивают. По количеству полученного сульфата бария рассчитывают содержание нитрата бария в исходном образце. Весовой анализ дает очень точные результаты, но он очень трудоемок и длителен, поэтому все более вытесняется другими методами анализа. [c.75]


    Для определения содержания палладия в растворе методом фиксированной концентрации использовали реакцию окисления а-нафтиламина нитрат-ионами, катализируемую соединениями палладия. Определить концентрацию палладия (мкг/мл) в исследуемом растворе, если при измерении времени т, необходимого для достижения оптической плотности, соответствующей оптической плотности раствора с концентрацией палладия [c.162]

    Рассмотрим определение содержания нитрата в вытяжке из почвы. Сначала получают водную вытяжку из почвы, приготовляют серию стандартных растворов нитрата калия для построения градуировочного графика, готовят иономер ЭВ-74 к работе. Находят pNOg стандартных растворов и получают градуировочный график. Затем измеряют pNOa почвенной вытяжки и вычисляют содержание нитрат-иона. [c.411]

    Этот метод применяют для перевода ионов в форму, удобную для количественного определения. При этом анализируемый раствор пропускают через колонку, заполненную ионитом в определенной форме. Таким методом можно, например, определить содержание ионов Ыа+ в любом растворе натриевой соли. Раствор пропускают через колонку с ионитом в Н+-форме и проводят определение выделившейся кислоты содержание нитрата определяют после ионного обмена с СГ-ионами, которые легко определить. Несмотря на то что эти методы находят применение, недостаток их в том, что определяется сумма присутствующих катионов или анионов. Методы находят применение при определении содержания чистых солей в растворе и для получения растворов, не содержащих карбонат- и силикат-ионов. Применяя эти методы, можно отделить ионы, мешающие обнаружению и определению других ионов в растворе. [c.380]

    Определение содержання нитрат-ионов [c.81]

    Хроматные буферные системы применяли, в частности, при определении анионов в воде озера Байкал. Разделение их представлено на рис. 46. При этом ионы с большей подвижностью - хлориды, сульфаты и карбонаты - определяются количественно методом стандартной добавки, в то время как содержание нитратов и фосфатов вследствие низких концентраций определяются путем сравнения с внешним стандартом. [c.58]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Позже было показано, что роль урана сводится к каталитическому влиянию его ионов при восстановлении ЫОз -ионов, что было использовано для количественного определения очень малых количеств урана порядка 10 —10 М [577, 229], а также для определения малого содержания нитратов и нитритов [663, [c.194]

    Ход определения. К 10 мл пробы прибавляют 1 м.л раствора салицилата натрия и выпаривают в фарфоровой чашке на водяной бане досуха. После охлаждения сухой остаток увлал<няют 1 мл серной кислоты и оставляют на 10 мин. Содержимое чашки разбавляют дистиллированной водой, переносят количественно в мерную колбу емкостью 50 мл, прибавляют 7 мл 10 н. раствора едкого натра, доводят дистиллированной водой до метки и тщательно перемешивают. После охлаждения до комнатной температуры вновь доводят объем до метки н окрашенный раствор колориметрируют. В течение 10 мин после прибавления раствора едкого натра окраска не изменяется. Из найденных значений оптической плотности вычитают оптическую плотность холостой пробы (приготовленной тем же способом с дистиллированной водой) и по калибровочному графику находят содержание нитрат-ионов. [c.141]

    Применение каталитической волны нитрат-иона позволило нам разработать методы определения молибдена в индии высокой чистоты при содержании молибдена до 5-10" % без отделения индия [18] урана при его малых содержаниях в минералах, золах углей, сливных водах и других веществах после отделения его экстракцией метилэтилкетоном или эфиром [17], а также нитратного азота в реактивах [19]. [c.197]

    Гидразин определяли обратным иодатным методом [44], нитрат-ион — осаждением азотнокислого нитрона [47], аммоний — отгонкой аммиака из щелочного раствора и поглощением его 0.1 н. раствором азотной кислоты, ионы водорода — титрованием 0.05 н. щелочью, а перекись водорода — колориметрическим титрованием с применением солей титана. В случае соли N2H4-HNOa проводилось определение содержания нитрат-иона до и после озонирования, и образовавшийся нитрат рассчитывали по разности. Также по разности рассчитывали и содержание образующихся Н+-ионов. Точ- [c.142]

    Ход определения. Прозрачную пробу объемом 100 мл или менее с содержанием не более 5 мг N0 нейтрализуют до pH 7, переливают в фарфоровую чашку и выпаривают на кипящей водяной бане досуха. К сухому остатку прибавляют 2,0 мл раствора фенолдисуль-фюновой кислоты и размешивают стеклянной палочкой до полного растворспия. Если потребуется, смесь слегка нагревают на водяной" бане. Прибавляют 20 мл дистиллированной воды и приливают при помешивании 6—7 мл концентрированного раствора аммиака или 5—6 мл 12 н. раствора едкого кали. Если при этом выделяются гидроокиси присутствующих металлов, их удаляют фильтрованием через стеклянный фильтр или прибавляют по каплям аммиачный раствор комплексона П1 до полного растворения осадка. Фильтрат или прозрачный раствор переносят в мерную колбу емкостью 50 или 100 мл, доводят дистиллированной водой до метки и содержимое колбы перемешивают. Окрашенный раствор колориметрируют. Из найденного значения вычитают оптическую плотность холостого раствора (дистиллированная вода с реактивами) и по калибровочному графику находят содержание нитрат-ионов. [c.140]


    Гесслер [221] использовал эту реакцию для разработки метода количественного определения нитратов. Для этого к 3 мл анализируемого раствора прибавляют 1 мл 1,1%-ного раствора сульфаниловой кислоты в 10%-ной уксусной кислоте и смесь облучают ультрафиолетовым светом при перемешивании 20 мин. Затем добавляют 0,5 мл 1 %-ного раствора а-нафтиламина в 10%-ной уксусной кислоте и через 15 мин измеряют оптическую плотность окрашенного раствора. Аналогично проводят холостой опыт. Содержание нитрат-ионов в анализируемом растворе находят по калибровочному графику, полученному с применением стандартного раствора нитрата калия ил натрия. [c.42]

    Ход анализа. Для определения нитрат-иона настраивают npti6op с использованием рабочих стандартных растворов 0,01 М 0,001 М и 0,0001 М растворов нитрата калия. Переносят в стеклянный стакан 20 г воздушно-сухой почвы, приливают 50 мл 1%-ного раствора алюмокалиевых квасцов и взбалтывают 30 мин. В полученной суспензии измеряют активность нитрат-нона. Содержание нитрат-ионов в пробе находят по градуировочному графику или непосредственно по показаниям прибора. [c.355]

    Методика. Пробы анализируемой воды и стандартные растворы перед определением смешивают с равным объемом раствора для подавления влияния мешающих примесей (№930710). Стандартные растворы готовят разбавлением 0,1 М раствора нитрата натрия (№ 920706). Содержание нитрат-ионов в анализируемом растворе либо определяют непосредственно, применяя микропроцессорный иономер lonalyzer (модель 901), либо рассчитывают по калибровочному графику. [c.79]

    При определении нитратов результаты анализа иногда представляют не в элементной форме (N), как указано на стр. 319, а в содержании нитрат-ионов NOF. В этом случае берут 0,1631 г перекристаллизованного и высушенного до постоянного веса при 100—105° X. ч. KNO3, растворяют в 1 л дистиллированной воды, прибавляют для консервации 1 мл толуола и тщательно перемешивают. Полученный раствор содержит 0,1 мг НОГ в 1 мл. [c.39]

    М уксусной кислоты, содержащим 0,005 М бериллия, и определяли спектрофотометрически [181]. Около 10" % кремния сорбировалось на анионите в С1 -форме в виде SiF " из раствора, содержащего фтористоводородную кислоту, с последующим вымыванием раствором борной кислоты для спектрофотометрического определения [5]. Нитрат-ион при содержании порядка 10 % сорбировался на слабоосновном анионите в С1"-форме затем его вымывали 1 %-ным раствором Na l и определяли спектрофотометрически [182]. Анионный обмен использовали также для предварительного концентрирования и и Th при полярографическом и спектрофотометрическом определениях [183]. Цезий при содержании 1 10" % сорбировался на фосфоро-молибдате аммония в статических условиях. После растворения ионообменника в растворе щелочи цезий экстрагировали раствором тетрафенилбор-натрия в смеси гексана и циклогексана и определяли фотометрически [184]. [c.113]

    Гетеротрофная денитрификация — процесс, активно протекающий при згчастии микроорганизмов (бактерий), получающих энергию из водорастворенных органических соединений последние являются донором электронов. Для завершения окислительно-восстановительных реакций нужен акцептор, которым и может служить в определенных условиях нитрат-ион. Однако, в приповерхностных зонах водоносной толщи конкурирующим компонентом является растворенный кислород (О2), который предпочтительнее используется бактериями в метаболическом цикле. Поэтому в присутствии кислорода содержание нитрат-иона остается высоким, что отмечается в многочисленных публикациях. Как только концентрация растворенного О2 падает ниже некоторой критической величины (для различных бактерий соответ-ствующая пороговая концентрация меняется), микроорганизмы начинают использовать кис- [c.270]

    Описанная методика может быть использована для определения содержания фторидов и хлоридов с помощью фторид- и хлоридселективных электродов соответственно. Для создания постоянной нонной силы целесообразно использовать ацетатный буферный раствор (при определении фторид-ионов) или 1 М раствор нитрата калия (при определении хлорид-ионов). [c.125]

    Для определения содержания мышьяка в природном трисульфиде мышьяка навеску этого минерала массой 2,98 г окислили смесью NaO l и NaOH. Образовавшиеся ионы хлора связали с помощью нитрата серебра, получив при этом осадок массой 20 г. Определите массовую долю сульфида мышьяка в минерале. [c.135]

    Пробу фильтрата бурового раствора (нейтрализованную, если она щелочная) титруют стандартным раствором нитрата серебра с использованием хромата калия в качестве индикатора. Результаты анализа выражают в частях иона хлорида на миллион, хотя концентрацию фактически измеряют в миллиграммах ионов С1 на 1 л фильтрата. Для определения содержания хлоридов в растворе на углеводородной основе пробу разбавляют смесью Эксосоля и изопропилового спирта (3 1) и дистиллированной водой, нейтрализуют по фенолфталеину, а затем титруют обычным путем. [c.124]

    Спектрофотометрические методы определения содержания отдельных РЗЭ основаны на использовании спектров поглошения растворов солей РЗЭ — хлоридов, нитратов, перхлоратов. Из всех элементов Периодической системы Д. И. Менделеева только у солей РЗЭ (и солей актинидов) наблюдаются довольно узкие полосы погло-шений с острыми максимумами в инфракрасной, видимой и ультрафиолетовой областях спектра. Узкополосные спектры поглошения аква-ионов лантаноидов объясняются особенностями строения их оболочек, причем спектр поглошения каждого РЗЭ имеет характерный, только ему присущий вид (рис. 22), так как отражает электронные переходы на оболочке 4/. Исключение составляют ионы иттрия, лантана и лютеция, которые не обладают собственным поглошением в растворах их солей. Спектры поглошения РЗЭ используют для определения содержания отдельных РЗЭ с помощью спектрофотометров или фотоэлектроколориметров, снабженных ртутной лампой СВД-120А (ФЭК-56), дающей линейчатый спектр. [c.195]

    Для измерения pH воды широко применяются как лабораторные, так и промышленные рН-метры со стеклянными электродами (см. п. 9.14.5.1). В отдельных случаях могут использоваться металлаоксидные электроды, например сурьмяный, молибденовый и др. Имеются также стеклянные электроды для определения содержания в растворе натрия и калия обычно концентрацию их определяют на пламенном фотометре. Изготовляются электроды с ион-селективными мембранами для определения в воде фтора, хлора, брома, иода, сульфидов, сульфатов. Разработаны также электродные системы для измерения концентрации ионов кальция, магния, нитратов и др. Следует, однако, отметить, что с помощью электродов определяется лишь активная концентрация ионов (см. п. 2,14.4). [c.181]


Смотреть страницы где упоминается термин Определение содержания нитрат-ионов: [c.125]    [c.76]    [c.228]    [c.219]    [c.217]    [c.105]    [c.181]    [c.166]    [c.103]    [c.121]    [c.417]   
Смотреть главы в:

Справочник по защите подземных металлических сооружений от коррозии -> Определение содержания нитрат-ионов




ПОИСК





Смотрите так же термины и статьи:

Нитрат-ионы

Нитрат-ионы ионами

Нитрат-ионы определение

Нитраты, определение

Определение иония



© 2025 chem21.info Реклама на сайте