Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат

    Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализирует  [c.574]

    Второй обходный путь в глюконеогенезе-это превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат [c.605]

Рис. 23-20. Цикл Кальвина-превращение Oj в D-глюкозу в процессе фотосинтеза. Вступающая в цикл Oj и конечный продукт, глюкоза, показаны на красном фоне. Все прочие соединения, вступающие в цикл или выходящие из него, обведены рамкой. Сбалансированные уравнения реакций см. на рис. 23-21. ЗФГ-3-фосфоглицерат ГЗФ - глицеральдеги д-З-фос-фат ДГАФ-дигидроксиацетонфосфат ФДФ-фруктозо-1,6-дифосфат Ф6Ф -фруктозо-6-фос-фат Г6Ф-глюкозо-б-фосфат Э4Ф-эритрозо- Рис. 23-20. <a href="/info/1581685">Цикл Кальвина-превращение</a> Oj в D-глюкозу в <a href="/info/526428">процессе фотосинтеза</a>. Вступающая в цикл Oj и <a href="/info/17660">конечный продукт</a>, глюкоза, показаны на красном фоне. Все <a href="/info/279716">прочие соединения</a>, вступающие в цикл или выходящие из него, обведены рамкой. <a href="/info/1459095">Сбалансированные уравнения реакций</a> см. на рис. 23-21. ЗФГ-3-фосфоглицерат ГЗФ - глицеральдеги д-З-фос-фат ДГАФ-дигидроксиацетонфосфат ФДФ-фруктозо-1,6-дифосфат Ф6Ф -фруктозо-6-фос-фат Г6Ф-глюкозо-б-фосфат Э4Ф-эритрозо-

    ПРЕВРАЩЕНИЕ ФРУКТОЗО-1,6-ДИФОСФАТА ВО ФРУКТОЗО-6-ФОСФАТ [c.66]

    Первый раздел Практикума должен помочь студентам освоить методические приемы и основы аналитической биохимии. Он содержит описание основных принципов и методов концентрационного анализа, принятых в биохимии (спектрофотометрического, колориметрического, манометрического), в частности, для количественного определения гликогена, глюкозы, неорганического фосфата, фосфорных эфиров углеводов, молочной и пировиноградной кислот. В раздел включены работы, посвященные анаэробному превращению углеводов. Каждая задача, выполняемая студентом, предусматривает анализ чистоты исходного препарата углевода или его фосфорного эфира, получение ферментного препарата (гомогената или экстракта ткани), постановку биохимического эксперимента, количественную оценку результатов. Количественное определение веществ проводится несколькими методами, результаты сопоставляются. Так, выполняя задание по теме Превращение фруктозо-1,6-дифосфата в молочную кислоту , студент анализирует фруктозо-1,6-дифосфат по фруктозе и по фосфату, молочную кислоту определяет спектрофотометрическим и колориметрическим методами. Подобным образом выполняются работы, связанные с превращением других фосфорных эфиров углеводов, гликогена, глюкозы. [c.5]

    П. превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат [c.106]

    На нормальном пути Эмбдена — Мейергофа — Парнаса (например, в мышце) фруктозо-6-фосфат перед расщеплением претерпевает фосфорилирование под действием АТФ и фермента фосфофруктокиназы до фруктозо-1,6-дифосфата IV (реакция 5). Расщепление фруктозо-1,6-дифосфата до 3-фосфоглицеринового альдегида V и диоксиацетонфосфата VI (реакция 6) происходит под действием альдолазы между образовавшимися триозофосфатами устанавливается равновесие. Это превращение альдоза кетоза (реакция 7) катализируется триозофосфат-изомеразой. Таким образом, из одной молекулы глюкозы образуются две молекулы 3-фосфоглицеринового альдегида V. [c.368]

    Многие исследователи работали над вопросами спиртового брожения. Л. А. Иванов впервые установил в 1903 г. участие фосфорной кислоты в процессах брожения и показал, что стимулирующее действие фосфата сводится к тому, что образуется промежуточное соединение фосфорной кислоты (фосфорные эфиры), способное к дальнейшим превращениям. Этот процесс, получивший название фосфорилирования, является промежуточной стадией брожения. Кроме того, в присутствии неорганических соединений фосфора скорость брожения быстро возрастает. В дальнейшем было установлено, что независимо от того, какой гексозный сахар был взят для брожения, в результате фосфорилирования образуется дифосфат фруктозы. Роль фосфора в этих процессах изучали также английские ученые А. Гарден и Т. Юнг (1905). Они разработали схему спиртового брожения, включающую образование фосфорных эфиров. А. И. Лебедев (1881 — 1938) открыл многие основные этапы спиртового брожения, используя дрожжевой сок, полученный по его методу. Для разделения смеси ферментов А. И. Лебедев применял ультрафильтрацию через желатиновые фильтры. Он совершенно верно определил роль кофермента как передатчика водорода при процессах брожения. В настоящее время установлено, что коферменты состоят из комплекса различных веществ. В результате своих исследований [c.534]


    Если число частиц в реакции возрастает, то уменьшение абсолютных значений концентраций компонентов будет способствовать смещению равновесия в сторону продуктов реакции. Например, реакция превращения фруктозо-1,6-дифосфата в смесь глицеральдегид-З-фосфата и дигидроксиацетонфосфата характеризуется довольно высоким положительным значением величины Д6 = 23,8 кДж/моль. Однако при концентрациях компонентов 10 М в стехиометрической смеси всех трех компонентов Дб составит [c.341]

    В начале этой главы мы уже говорили о превращении глюкозы в этанол и диоксид углерода (рис. 18-1). Одна из основных стадий этого процесса состоит в расщеплении фруктозо-1,6-дифосфата на фосфодиоксиацетон и глицеральдегид-З-фосфат. Данная реакция обратима и при участии соответствующих ферментов может привести к образованию фруктозо-1,6-дифосфата. [c.74]

    Важным этапом серии гликолитических реакций является превращение фруктозо-6-фосфата во фруктозо-1,6-дифосфат. В этой реакции, определяющей скорость всего процесса гликолиза (см. стр. 70), используется еще одна молекула АТФ (роль донора фосфата могут выполнять также УТФ и ИТФ) [3]. Эта реакция в клетке практически необратима [АС° = —14,2 кДж/моль (—3,4 ккал/моль)]. Обратное превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат идет в клетке, но оно протекает по другой реакции (гидролиз под действием фермента фосфатазы, А0 = —16,7 кДж/моль). [c.419]

    Обходный путь требуется для превращения пирувата в фос фоенолпируват. . . . . Второй обходный путь в ГЛЮ конеогенезе-это превращение фруктозо-1,6-дифосфата во фрук-тозо-6-фосфат. . . . . Третий обходный путь-это путь, ведущий от глюкозо-6-фосфата к свободной глюкозе. . . . Глюконеогенез требует значительных затрат энергии. . . Реципрокная регуляция глюконеогенеза и гликолиза. . , . Промежуточные продукты цикла лимонной кислоты являются также предшественниками глюкозы. ........ [c.729]

    Полная надежность этого регуляторного механизма и аналогичное регулирование обратного (биосинтетического) процесса обеспечиваются тем, что большинство фруктозо-1,6-дифосфатаз, специфичных ферментов, катализирующих гидролитическое превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат (реакция XI.5а), ингибируется высокими концентрациями субстрата, а также АМФ (последнее в результате аллостерического эффекта). [c.287]

    Расщепление фруктозо-1,6-дифосфата на две фосфотриозы катализирует альдолаза (КФ 4.1.2.13). При этом образуется глицеральдегид-3-фосфат и диоксиацетонфосфат. Альдолаза мышц не требует для проявления ферментативной активности ионов металлов или каких-либо кофакторов. При исследовании превращения фруктозо-1,6-дифосфата в качестве источника альдолазы используют диализованные экстракты мышц. В процессе диализа из экстракта удаляются компоненты адени-ловой системы НАД и неорганический фосфат, в отсутствие которых становится невозможным дальнейшее превращение глицеральдегид-З-фосфата под влиянием глицеральдегид-З-фосфатдегидрогеназы. Альдолаза относительно термостабильна. Ферментативное расщепление фруктозо-1,6-дифосфата обратимо, положение равновесия с повышением температуры смещается в сторону образования фосфотриоз, константа равновесия при этом возрастает. [c.63]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]


    Подподкласс 4.1.2 — альдегидлиазы — ферменты, катализирующие разрыв С—С- вязи, сопровождающийся возникновением альдегидной группы. Например, в цепи ферментативных реакций, ведущих к превращению глюкозы в трехуглеродные фрагменты, разрыв шестиуглеродной цепи происходит на стадии превращения фруктозо-1,6-дифосфата в 3-фосфоглицериновый альдегид и дигидроксиацетон-фосфат по реакции [c.146]

    Эти реакции осуществляются высокоспецифическими ферментами, гидролизующими фосфоэфирную связь. Реакции являются экзергоническими и не требуют затраты энергии. Превращение фруктозо-1,6-дифосфата во фрукто-зо-6-фосфат катализируется ферментом фруктозо-1,6-дифосфатазой  [c.274]

    Для превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат под влиянием фосфофруктокииазы необходим  [c.569]

    Д ифО сфат фруктозы частично дефосфорилируется и изо-иеризуется в 1-фосфат глюкозы, из которого синтезируются сахароза (см. стр. 688) и крахмал (см. стр, 713). Другая часть 1,6-дифосфата фруктозы претерпевает ряд превращений, приводящих к регенерации 1,5-дифосфата рибулозы — акцептора углекислоты. [c.664]

    Фруктозо-6-фосфат переходит в фруктозо-1,6-дифосфат при участии АТФ и фермента фосфогексокиназы. Дифосфат фруктозы перегруппировывается в ациклическую форму кетозы и под влиянием фермента альдолазы симметрично делится на глицеральдегид-З-фосфат и диоксиацетонфосфат. Эти два соединения с тремя атомами углерода (триозофос-фаты) способны к взаимному превращению через енолизацию с отдачей протона и последующим его присоединением  [c.162]

    При брожении или сгорании глюкозы в процессе клеточного дыхания первой фазой этих многостадийных реакций (см. схему на стр. 435) является фосфорилирование глюкозы 1, т.е. превращение ее в сложный эфир фосфорной кислоты. Этерификация осуществляется по гидроксилу шестого углеродного атома глюкозы посредством АТФ при содействии фермента глюкокиназы. Образующийся 6-фосфат глюкозы (11) под действием фермента изомеразы превращается в 6-фосфат фруктозы (111)., (Если сбраживанию подвергается фруктоза, то при фосфорилировании непосредственно образуется 6-фосфат 111.) Далее 111 епде раз фосфори-лируется по первому гидроксилу при действии новой молекулы АТФ (фермент фосфофруктокиназа). Полученный так 1,6-дифосфат фруктозы (IV—V) претерпевает под влиянием фермента альдолазы расщепление (реакция, обратная альдольной конденсации) на фосфат диоксиацетона (VI) и 3-фосфат глицеринового альдегида (VII). Эти два фосфата триоз под действием соответствующей изомеразы (фермент) обратимо превращаются друг в друга (Vl4=tVII). В дальнейшем превращении фигурирует лишь фосфат VII. Смысл этого дальнейшего превращения в том, что [c.434]

    Очевидно, что метаболические процессы во всех живых организмах должны очень четко контролироваться, чтобы обеспечить строго направленные изменения, избежав при этом катастрофического срыва в направлении к состоянию термодинамического равновесия. Однако ферменты, имеющие рассмотренные в предыдущих главах кинетические свойства, вряд ли способны в должной мере обеспечить подобный контроль. Имеет смысл поэтому предварительно обсудить одну из важных стадий метаболизма — взаимное превращение фруктозо-6-фосфата и фруктозо-1,6-дифосфата—и выяснить, какими кинетическими свойствами должны обладать регулируемые ферменты. Для превращения фрзт тозо-6-фосфата в фруктозо-1,6-дифосфат требуется АТФ  [c.162]

    Это превращение катализируется фосфофруктокиназой и представляет собой первую стадию гликолиза, которая присуща только этому процессу, иначе говоря, это стадия гликолиза, которая не входит ни в какие другие метаболические процессы. Стадия превращения фруктозо-6-фосфата в фруктозо-1,6-дифосфат вполне может поэтому контролировать весь процесс гликолиза и, несомненно, является его ключевой стадией. В физиологических условиях эта реакция практически необратима, и в глюконеоге-незе обратная реакция протекает обходным путем, а именно путем гидролиза фруктозо-1,6-дифосфата, катализируемого фруктозо-дифосфатазой  [c.162]

    Реакция взаимного превращения фруктозо-6-фосфата и фруктозо-1,6-дифосфата может служить иллюстрацией еще одного важного аспекта метаболического контроля. Продукт этой реакции и конечный продукт гликолитической цепи различаются между собой. Действительно, в реакции, катализируемой фосфофруктокиназой, АТФ выступает в роли субстрата,, в то время как функцией гликолиза в целом, если его рассматривать как путь, ведущий к циклу трйкарбоновых кислот и транспорту электронов-является наработка больших количеств АТФ. Таким образом, АТФ следует считать продуктом гликолиза, несмотря на то что он является субстратом реакции, контролирующей скорость гликолиза. Поэтому обычное ингибирование фосфофрукто-киназы продуктом, АДФ, приводит к эффекту, обратному желаемому для того чтобы обеспечить стационарное снабжение энергией, фосфофруктокиназа должна ингибироваться конечным продуктом цепи, АТФ, что и наблюдается в действительности. Подобный тип ингибирования не может быть реализован на основе обычных механизмов, т. е. путем связывания ингибитора, являющегося структурным аналогом субстрата. В одних случаях такие ингибиторы могут вызывать нежелательный эффект, а в других конечный продукт цепи может иметь незначительное структурное сходство с любым из участников стадии, которая является контролирующей (например, Ь-гистидин имеет очень мало сходства со своим предшественником в биосинтетической цепи — фосфорибозилпирофосфатем). Ингибирование или активация соответствующими метаболическими эффекторами возможны благодаря тому, что во многих регулируемых ферментах имеются центры связывания эффектора, которые пространственно удалены от каталитических центров. Эти центры названы [c.164]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Эти методы используются и в тех случаях, когда непосредственных спектральных изменений в смеси не происходит, но продукт ферментативной реакции участвует в другой реакции, которая уже идет с изменением поглощения. Например, альдолаза катализирует превращение фруктозо-1,6-дифосфата в глицеральдегид-З-фос-фат и дигидроацетонфосфат. Глицеральдегид-З-фосфат-дегидроге-наза восстанавливает НАД , и появление НАД-Н сопровождается изменением поглощения при 340 нм. TaKHjw образом, альдолазу можно определить по кинетике появления НАД-Н в присутствии избытка фруктозо-1,6-дифосфата, глицеральдегид-З-фосфат-дегид-рогеназы и НАД (рис. 5.4). Восстановление НАД или окисление НАД-Н осуществляется в ходе большого числа метаболических реакций. Все описанные измерения можно проводить на довольно дешевых спектрофотометрах, работающих в спектральном диапазоне до 340 нм, и даже пользоваться стеклянными кюветами. Поскольку НАД и НАД-Н сравнительно дороги, лучше иметь кюветы тоньше 1 см. [c.156]

    Более сложные механизмы регуляции О.в. обусловлены прямыми и обратными управляющими связями. Суть их состоит в воздействии метаболитов на интенсивность биохим. процессов, в к-рых они сами образуются или испытывают превращения. В О.в. регуляция активности ферментов часто осуществляется посредством аллостерич. взаимод. ферментов с субстратами или промежут. продуктами (см. Ферменты). Классич. пример подобной регуляции с отрицат. обратной связью-подавление изолейцином собств. биосинтеза в результате его аллостерич. взаимод. с ферментом треониндегидратаза, катализирующим начальную р-цию пути биосинтеза изолейцина. Пример положит, прямой связи-стимуляция синтеза фосфоенолпирувата в гликолизе предшествующими метаболитами фруктозо-1,6-дифосфатом, глюкозо-6-фосфатом и глицеральдегид-З-фос-фатом. Управляющие связи такого рода позволяют стаби- [c.317]

    В животных организмах 1,6-дифосфат 0-фруктозы (1) под-)гается альдольному расщеплению, т.е. реакции, обратной ьдольной конденсации. Расщепление происходит под действием рмента альдолазы и в результате образуются фосфаты двух 03 — фосфат дигидроксиацетона (2) и 3-фосфат О-глнцери-вого альдегида (3). Эти соединения вовлекаются в дальней-1е превращения. [c.399]

    Третьим преимуществом ионитов как катализаторов по сравнению с растворимыми кислотами и основаниями является их более высокая селективность. Эта особенность ионитовых катализаторов обеспечивает повышение выхода и качества продуктов многих реакций, а в ряде случаев дает возможность осуществить превращения, которые в условиях гомогенного кислотно-основного катализа протекают неоднозначно или с другим результатом. Например, при алкилиро-вании фенолов олефинами нормального строения в присутствии бензолсульфокислоты образуются нежелательные диалкилфенолы, а при проведении этой реакции на катионите КУ-2 в качестве основного продукта получается монозамещенный алкилфенолЧ Аналогично этому пропиленгликоль дает в присутствии той же смолы моностеарат . Производные глицеринового альдегида, содержащие эфирные фосфатные группы, в присутствии обычных катализаторов легко гидролизуются, вследствие чего конденсация триозо-фосфатов во фруктозо-1,6-дифосфат может быть осуществлена только методами ферментативного катализа или же в присутствии модифицированных цис-теином анионитов как конденсирующих агентов . Селективность ионитов ярко иллюстрируют работы советских ученых по моделированию действия протео-литических ферментов - использование карбоксильных смол дало возможность осуществлять гидролитический разрыв строго определённых связей окисленного инсулина. . - [c.14]


Смотреть страницы где упоминается термин Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат: [c.457]    [c.463]    [c.467]    [c.214]    [c.120]    [c.211]    [c.252]    [c.382]    [c.348]    [c.369]    [c.217]    [c.135]    [c.71]    [c.220]    [c.98]    [c.176]    [c.478]    [c.68]    [c.71]   
Смотреть главы в:

Практикум по биохимии Изд.2 -> Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат

Метаболические пути -> Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат




ПОИСК





Смотрите так же термины и статьи:

Превращения фруктозо-6-фосфата

Фруктоза

Фруктоза Л Фруктоза

Фруктоза фосфаты

Фруктозаны

Фруктозо дифосфат Фруктозо

дифосфат



© 2025 chem21.info Реклама на сайте