Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Состояние голодания

    Особенно демонстративной формой этого эндогенного питания является состояние голодания, при котором жизненно наиболее важные органы, например мозг и сердце, питаются за счет потребления белков других видов [c.310]

    Особенно демонстративной формой этого эндогенного питания является состояние голодания, при котором жизненно наиболее важные органы, например мозг и сердце, питаются за счет потребления белков других видов тканей, например мышечной ткани. Белки мышц становятся источником белкового питания для мозга и сердца. Интересным примером эндогенного питания является также увеличение массы половых продуктов у осетровых рыб в период нереста за счет использования белков иных тканей, в первую очередь мышц. Все это приводит к предположению о возможном существовании лабильных резервов белка. По-видимому, б е л к и, дл а з м ы крови, а отчасти также печени и мышц, можно с известным правом рассматривать как резервные белки. Концентрация белков в плазме может уменьшаться в случае недостатка белка в пище и вновь восстанавливаться при благоприятном белковом питании. [c.328]


    Как следует из этого выражения, в одном аэротенке-смесителе невозможно получить высокую удельную скорость окисления при полной очистке. Чем глубже очистка, тем ниже концентрация питательного субстрата (загрязнений) для микроорганизмов и ниже удельная скорость окисления. При полной очистке микроорганизмы находятся в состоянии голодания и низкой ферментативной активности. [c.81]

    Эндоплазматическая сеть может выглядеть совершенно по-разному не только в зависимости от возраста клетки, но и в зависимости от ее физиологического состояния. Приведем хотя бы один пример. На рис. 85 видны клетки поджелудочной железы в состоянии голодания. Теперь посмотрим на следующий рисунок (рис. 86). Здесь также сфотографированы клетки поджелудочной железы, но перед фиксацией они в течение часа в изобилии снабжались питательными веществами. Хотя здесь еще сохраняется параллельное расположение, однако удлиненные цистерны уже не [c.202]

    Вдыхаемый воздух содержит приблизительно 21 объемн.% кислорода и 0,03 объемн.% СО2, а выдыхаемый— 16% кислорода и 4% СО2. В состоянии покоя человек потребляет около 20 л кислорода за час и дыхание обеспечивает насыщение им артериальной крови до 95%. При снижении этого процента по тем или иным причинам (уменьшение парциального давления кислорода, дефекты самого дыхательного аппарата и др.) появляются симптомы кислородного голодания понижение внимания, мышечная слабость, одышка и др. Реакция человеческого организма на уменьшенное атмосферное давление (с высотой над уровнем моря) видна из рис. Х-43. [c.577]

    Такое состояние называется кетозом или ацидозом. Ацидоз, понижение pH крови, обусловливается выведением с мочой двух указанных кислот в виде их аммонийных или натриевых солей. Кетоз и ацидоз наблюдаются при диабете, заболеваниях печени, голодании, алкоголизме и потреблении кетогенной пиши (в которой жиры значительно преобладают над углеводами). [c.407]

    Активность фосфофруктокиназы ингибируется также цитратом. Показано, что ири диабете, голодании и некоторых других состояниях, когда интенсивно используются жиры как источник энергии, в клетках тканей содержание цитрата может возрастать в несколько раз. В этих условиях происходит резкое торможение активности фосфофруктокиназы цитратом. [c.329]

    Кетонемия и кетонурия. В крови здорового человека кетоновые (ацетоновые) тела содержатся в очень небольших концентрациях. Однако при голодании, а также у лиц с тяжелой формой сахарного диабета содержание кетоновых тел в крови может повышаться до 20 ммоль/л. Это состояние носит название кетонемии оно обычно сопровождается резким увеличением содержания кетоновых тел в моче (кетонурия). Например, если в норме за сутки с мочой выводится около 40 мг кетоновых тел, то при сахарном диабете содержание их в суточной порции мочи может доходить до 50 г и более. [c.405]


    В настоящее время явления кетонемии и кетонурии при сахарном диабете или голодании можно объяснить следующим образом. И диабет, и голодание сопровождаются резким сокращением запасов гликогена в печени. Многие ткани и органы, в частности мышечная ткань, находятся в состоянии энергетического голода (при недостатке инсулина глюкоза не может с достаточной скоростью поступать в клетку). В этой ситуации благодаря возбуждению метаболических центров в ЦНС импульсами с хеморецепторов клеток, испытывающих энергетический голод, резко усиливаются липолиз и мобилизация большого количества жирных кислот из жировых депо в печень. В печени происходит интенсивное образование кетоновых тел. Образующиеся в необычно большом количестве кетоновые тела (ацетоуксусная и -гидроксимасляная кислоты) с током крови транспортируются из печени к периферическим тканям. Периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением и как следствие возникает кетонемия. [c.405]

    Белки способны также выполнять энергетическую функцию, особенно при избыточном их поступлении с пищей или в экстремальных ситуациях, когда белки тела подвергаются усиленному распаду, восполняя недостаток питательных веществ, например при голодании или патологии (сахарный диабет). Как известно, при сгорании 1 г белков освобождается энергия, равная 16,8 кДж. Эта энергия обычно может быть полностью заменена энергией окисления углеводов и липидов, однако при длительном исключении последних из пищи у животных не наблюдается существенных патологических отклонений, тогда как исключение белков из пищи даже на короткий срок приводит к выраженным нарушениям, а иногда и к необратимым патологическим явлениям. Если животные находятся на малобелковой диете, то у них очень быстро развивается белковая недостаточность—патологическое состояние, характеризующееся нарушением ряда важных физиологических функций организма. Аналогичные изменения наблюдаются у людей при недостаточном потреблении белка. Следовательно, белки являются незаменимыми для организма веществами, выполняющими прежде всего пластическую функцию. Специфическая роль белков, однако, этим не ограничивается. В опытах на крысах было показано, что белковая недостаточность у животных проявляется не столько в уменьшении массы органов и тканей, сколько в снижении активности ферментов, обусловленном замедлением процессов биосинтеза белка. [c.409]

    Кажущаяся стабильность химического состава целостного организма является результатом существования определенного равновесия между скоростями синтеза и распада его составляющих. Внедрение в биохимическую и клиническую практику метода меченых атомов позволило доказать, что белки нужны не только растущему, но и сформировавшемуся организму, когда его рост прекратился, т.е. имеются доказательства существования в организме механизма постоянного обновления химических составных частей тела. При нормальных физиологических условиях, как и при патологических состояниях, скорости синтеза и распада специфических веществ определяются, помимо нервно-гормонального влияния, химической природой веществ и внутриклеточной их локализацией. В растущем организме скорость синтеза многих компонентов органов и тканей преобладает над скоростью их распада. Тяжелые изнуряющие болезни, а также голодание, напротив, характеризуются преобладанием скорости катаболизма над скоростью синтеза. Почти все белки тела, включая структурные белки, гемоглобин, белки плазмы и других биологических жидкостей организма, также подвергаются постепенному распаду и синтезу. Например, более половины белков печени, сыворотки крови и слизистой оболочки кишечника подвергается распаду и ресинтезу в течение 10 дней. Медленнее обновляются белки мышц, кожи и мозга. [c.410]

    Как видно из схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений. Некоторое количество аминокислот подвергается распаду с образованием конечных продуктов белкового обмена (СО,, Н,0 и МНз) и освобождением энергии. Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, образуется примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков). Это количество составляет около 10% от суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма. Например, даже при полном голодании или частичном белковом голодании с мочой постоянно выделяется небольшое количество азотистых веществ, что свидетельствует о непрерывности процессов распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена), и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (см. главу 16). [c.429]


    Гипоксия (кислородное голодание)—состояние, возникаюш,ее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического окисления. Согласно классификации, предложенной И.Р. Петровым, гипоксии делятся на 2 группы  [c.595]

    Резко кислая реакция мочи наблюдается при лихорадочных состояниях, сахарном диабете (особенно при наличии кетоновых тел в моче), голодании и т.д. Щелочная реакция мочи отмечается при циститах и пиелитах (микроорганизмы способны разлагать мочевину с образованием аммиака уже в полости мочевого пузыря), после сильной рвоты, приеме некоторых лекарственных средств (например, бикарбоната натрия), употреблении щелочных минеральных вод и т.д. [c.618]

    Интенсивность обновления богатых энергией фосфорных соединений в головном мозге очень велика. Именно этим можно объяснить, что содержание АТФ и креатинфосфата в мозговой ткани характеризуется значительным постоянством. В случае прекращения доступа кислорода мозг может просуществовать немногим более минуты за счет резерва лабильных фосфатов. Прекращение доступа кислорода даже на 10-15 с нарушает энергетику нервных клеток, что в целостном организме выражается наступлением обморочного состояния. По-видимому, при кислородном голодании мозг может очень недолго получать энергию за счет процессов гликолиза. [c.634]

    Эти вещества из печени поступают в кровь и в периферических органах, в том числе и мозговой ткани, могут использоваться как источники энергии. Содержание кетоновых тел в сыворотке крови человека в норме невелико (0,03—0,2 ммоль/л). Увеличение концентрации кетоновых тел в крови — кетоз развивается при высокой скорости окисления жирных кислот, избыточного накопления ацетил-КоА, когда его количество превышает потребности цикла трикарбоновых кислот. Это состояние возникает при голодании, сахарном диабете, приеме пищи, богатой жирами, т. е. при недостатке углеводов (глюкозный голод, когда окисление жирных кислот становится для организма основным источником энергии). Концентрация кетоновых тел в сыворотке крови при патологии может достигать 16—20 ммоль/л. [c.334]

    При отрицательном азотистом балансе количество вьщеляемого азота превышает количество азота, поступающего в организм в течение суток. Это состояние встречается при голодании, белковой недостаточности, при тяжелых заболеваниях, когда происходит интенсивный распад белков у больных, получающих полноценную белковую пищу, а также при старении. [c.361]

    Функциональное состояние коры надпочечников, о котором мы судили на основании пробы Торна, в течение опытов с частичным голоданием претерпевало следующие изменения. До начала голодания (1,5 месяца отравления) функция коры надпочечников у подопытных крыс была несколько повышена (табл. 1). [c.699]

    Об этом же говорят и опыты кормления животных искусственными смесями аминокислот. Эти опыты не только показали полную возможность замены белков в пищевом рационе животного, например собаки, надлежащей смесью аминокислот для покрытия всех потерь от изнашивания тканей, но и подтвердили способность организма животных использовать в широких размерах аминокислоты как строительный материал при синтезе белка. Так, например, удавалось в течение многих недель поддерживать собак, а в некоторых наблюдениях также и людей, в состоянии азотистого равновесия при замене белка в пище продуктами гидролиза казеина или мяса. Точно так же оказалось возможным восстанавливать потери в весе после продолжительного голодания при скармливании животным искусственных, надлежащим образом составленных смесей аминокислот. Наконец, была показана возможность сохранения беременности и рождения [c.318]

    Микроорганизмы в вер Сних слоях загрузки растут быстро, питаясь поступающей в избытке пищей. По мере того как сточная вода стекает вниз, содержание органических веществ уменьшается до такой степени, что микроорганизмы в нижней зоне находятся в состоянии голодания. Таким образом, основное снижение БПК происходит в пределах 1 м в верлней части фильтра, общая высота которого составляет 1,8 м. Избыток биомассы, вымываемый из нагрузки фильтра, извлекается из воды во вторичном отстойнике. Продувка загрузки необходима, чтобы сохра- ить поры для прохождения сточной воды и воздуха. Перегрузка фильтра с щебеночной загрузкой по органическим загрязнениям в сочетании с недостаточной гидравлической нагрузкой может привести к засорению пор в биопленке, в результате чего происходит скопление сточной воды в материале загрузки. Последнее уменьшает эффективность очистки и вызывает появление неприятного запаха. [c.297]

    В жировой ткани уменьшается утилизация глюкозы и снижается ингибирующее действие инсулина на липолиз, жир мобилизуется в виде свободных жирных кислот и глицерола. Свободные жирные кислоты переносятся в другие ткани, где они либо окисляются, либо эстерифицируются. Глицерол после активации (превращения в глицерол-З-фосфат) поступает в углеводный пул (в основном в печени и почках). Во время перехода от сытого состояния к голоданию эндогенное образование глюкозы (из аминокислот и глицерола) отстает от ее использования и окисления, запасы гликогена в печени истощаются и концентрация глюкозы в крови падает. Мобилизация жира возрастает в течение нескольких часов, затем содержание свободных жирных кислот в плазме и глюкозы в крови стабилизируется на уровне, характерном для состояния голодания (0,7 —0,8 мкмоль мл и 60—70 мг/100 мл соответственно). Можно полагать, что при этом уровне глюкозы в крови животного ее поступление в ткани обеспечивает потребности утилизации и окисления. Компенсаторное увеличение окисления жирных кислот и ке тоновых тел позволяет снизить уровень окисления [c.297]

    Биологическое значение онкотического давления. При понижении содержания белка в крови, т. е. при гипопротеинемиях, вследствие голодания, нарушений деятельности пищеварительного тракта или потери белка с мочой при заболеваниях почек, возникает разница в онкотическом давлении в тканевых жидкостях и в крови. Вода устремляется в сторону более высокого давления — в ткани возникают так называемые онкотические отеки подкожной клетчатки ( голодные отеки и почечные отеки). Введение больших количеств Na l, депонирующегося в подкожной клетчатке и также являющегося осмотически активным веществом, может серьезно ухудшить состояние больного. В оценке состояния и в лечении таких больных учет осмо-онкотических явлений имеет очень важное значение. [c.193]

    Субстратами орг. обмена являются в-ва, поступающие из внеш. среды, и в-ва внутр. происхождения. В процессе О.в. часть конечных продуктов выводится во внеш. среду, др. часть используется организмом. Конечные продукты орг. обмена в тканях, способные накапливаться или расходоваться в зависимости от условий существования организма (напр., триацилглицерины, гликоген, крахмал, проламины), наз. запасными, или резервными, в-вами. Если скорость поглощения субстратов превосходит скорость выведения конечных продуктов, то анаболизм преобладает над катаболизмом и организм развивается или накапливает резервные в-ва. При равенстве этих скоростей рост организма прекращается и О.в. переходит в состояние, близкое к стационарному. В случае превышения скорости выведения конечных продуктов над скоростью потребления после истощения запаса резервных в-в организм обычно погибает. Последнее наблюдается при искусств, ограничении потребления внеш. субстратов (напр., алиментарная дистрофия при голодании животных, самосбраживание дрожжей в условиях дефицита углеводов) или в естеств. условиях (напр., при интенсивном дыхании плодов и семян растений). [c.310]

    В крови здорового человека кетоновые тела содержатся лишь в очень небольших концентрациях (в сыворотке крови 0,03—0,2 ммоль/л). При патологических состояниях (у лиц с тяжелой формой сахарного диабета, при голодании, а также у животных с экспериментальным острым стрептозотоциновым или аллоксановым диабетом) концентрация кетоновых тел в сыворотке крови увеличивается и может достигать 16—20 ммоль/л. [c.380]

    Одно из характерных нарушений азотистого обмена—белковая недостаточность, являющаяся следствием не только дефицита белка, но и ряда тяжелых заболеваний даже при достаточном поступлении белка с пищей. Белковая недостаточность у человека развивается как при полном и частичном голодании, так и при приеме однообразного белкового питания, когда в диете преобладают белки растительного происхождения, биологическая ценность которых значительно ниже ценности белков животного происхождения. Результатом этих состояний являются развитие отрицательного азотистого баланса, гипопротеинемии (снижение концентрации белков в сыворотке крови до 50—30 г/л в норме 65—85 г/л) и нарушения колловдно-осмотического и водно-солевого обмена (развитие отеков). При тяжелых формах пищевых дистрофий, например при заболе- [c.465]

    Выраженная гиперлипемия развивается при сахарном диабете. Обычно она сопровождается ацидозом. Недостаток инсулина приводит к снижению фосфодиэстеразной активности, что в конечном счете способствует активации липазы и усилению липолиза в жировых депо. Гиперлипемия при сахарном диабете носит транспортный характер, так как избыточный распад жиров на периферии приводит к повышенному транспорту жирных кислот в печень, где происходит синтез липидов. Как отмечалось ранее, при сахарном диабете и голодании в печени образуется необычно большое количество кетоновых тел (ацетоуксусная и р-гидроксимасляная кислоты), которые с током крови транспортируются из печени к периферическим тканям. Хотя периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой их концентрации в крови органы не справляются с их окислением и, как следствие, возникает состояние патологического кетоза, т. е. накопление кетоновых тел в организме. Кетоз сопровождается кетонемией и кетонурией — повышением содержания кетоновых тел в крови и выделением их с мочой. Возрастание концентрации триацилглицеролов в плазме крови отмечается также при беременности, нефротическом синдроме, ряде заболеваний печени. Гиперлипемия, как правило, сопровождается увеличением содержания в плазме крови фосфолипидов, изменением соотношения между фосфолипидами и холестеролом, составляющем в норме 1,5 1. Снижение содержания фосфолипидов в плазме крови наблюдается при остром тяжелом гепатите, жировой дистрофии, циррозе печени и некоторых других заболеваниях. [c.357]

    Наибольшую информацию о техническом состоянии объекта позволяет получить оценка закона распределения вероятности его проводимости или сопротивления. Опыт использования такой оценки известен в трибометрии при определении нафузки в контакте, интенсивности изнашивания, исследовании явления пленочного голодания. Оценка закона, однако, представляет существенную проблему и предполагает применение сложной диагностической аппаратуры, что приемлемо лишь в лабораторных условиях при проведении трибологических исследований. В практике неразрушающего контроля и технической диагностики обычно офаничи- [c.472]

    Ацетоуксусная и Р-оксимасляная кислоты являются нормаль ными промежуточными продуктами окисления жирных кислот, ко торое протекает в печени. Эти оксосоединения в необходимом коли честве из печени поступают в кровь, а затем в ткани, где они окис ляются до СО2 и Н2О. Нарушение процесса окисления и накопле ние оксосоединений связано с усиленным расщеплением жиров,с нарушением углеводного обмена, голоданием и другими патологи ческими состояниями организма. Употребление большого количе ства пищи, нарушение функции желез внзггренней секреции, дея тельности нервной системы приводит к отложению большого коли чества жира в жировых депо или других органах. [c.66]

    В аэрационном резервуаре жидкость, в которой суспендирована взвесь микроорганизмов, обычно называют смешанной жидкостью, а взвесь колонии микроорганизмов называют частицами, взвешенными в смешанной жидкости (MLSS). Взвесь колоний микроорганизмов называют активным илом потому, что эти массы микроорганизмов оказались очень активными в извлечении органических веществ из раствора. Этот процесс экстрагирования представляет собой бакте-териальный метаболизм в состоянии эндогенной респирации (или голодания). [c.311]

    Влияние сероводорода на животных оценивалось с помощью различных методов и тестов. Исследовалась регуляция дыхания и кровообращения при функциональных нагрузках (ортостатическая проба, вращение в центрифуге), определялась активность дегидраз в тканях методом Тунбер-га, применялись такие интегральные тесты, как частичное голодание на фоне отравления, плавательная проба, измерялось кровяное давление, регистрировалась ЭКГ, проба Торна и велись наблюдения за общим состоянием и весом животных. [c.697]

    Повышение устойчивости к голоданию и физической нагрузке объясняется, возможно, развитием у животных состояния неспецифической повышенной сопротивляемости — СНПС [8, 9]. Не исключено также, что в данном случае для сероводорода имеет место какой-то специфический механизм действия. [c.700]

    При некоторых патологических состояниях, связанных с нарушениями углеводного обмена, например при диабете, голодании и др., в печени образуется избыточное количество ацетоуксусной кислоты, и она в повышенном против нормь количестве поступает в кровь. Часть ацетоуксусной кислоты в тканях восстанавливается в 3-оксимасляную кислоту з, а часть декарбоксилируется и превращается в ацетон. [c.153]

    В норме у взрослых людей и у животных биосинтез и окисление триацилглицеролов протекают одновременно, и для этих процессов устанавливается определенное стационарное состояние, так что количество жира в организме сохраняется в течение сравнительно длительного времени на относительно постоянном уровне, хотя, конечно, при изменении калорийности пищевого рациона могут возникать незначительные временные отклонения. Однако в тех случаях, когда углеводы, жиры или белки употребляются в количествах, превосходящих энергетические потребности организма, излишки калорий запасаются в виде триацилглицеролов. Источником ацетил-СоА, необходимого для реального биосинтеза жирных кислот и триацилглицеролов, могут служить как углеводы (гл. 16Х так и углеродные цега аминокислот (гл. 18). Накопленный таким образом избыток жира может быть использован для получения энергии, что позволяет организму приспособляться к голоданию (гл. 26). [c.636]

    Острые отравления обычно связаны как с действием самого Д., так и продуктов его разложения (фосген, который образуется в присутствии открытого пламени), а также с кислородным голоданием вследствие поступления в воздух больших количеств Д. При легких отравленвях пострадавшие жалуются на головную боль, головокружение, слабость, тошноту, иногда повышенную сонливость. Это состояние длится от нескольких часов до [c.622]

    В живом организме происходит непрерывный распад и синтез белка. Механистическая теория Рубнера и Фойта, принимающая, что взрослый организм, находящийся в состоянии азотистого равновесия, способен только к ограниченному синтезу белка, необходимому для восстановления изношенных белковых структур, в настоящее время должна быть полностью отвергнута. Опыты с мечеными аминокислотами показали, что и во взрослом организме, даже при азотистом равновесии, происходит непрерывный интенсивный распад и синтез тканевых белков. Использование аминокислот пищи для синтеза тканевых белков происходит в значительных размерах и с большой скоростью. Установлено, что если скармливать взрослым крысам (находящимся в состоянии азотистого равновесия или белкового голодания) различные аминокислоты, меченные тяж елым азотом, то при этом не менее 50% введенного изотопного азота обнаруживается в клеточных белках. Одновременно такое же количество аминокислот (во взрослом, не растущем организме) освобождается из тканевых белков и поступает в кровь и тканевые жидкости, перемешиваясь с аминокислотами, поступившими из кишечника. Процесс обновления аминокислот в молекулах тканевых белков происходит с большой скоростью. В печени, как можно судить на основании опытов с изотопами, половина всего азота белков печени замещается на новый, изотопный азот в течение 5—7 дней. С наибольшей скоростью процесс обновления протекает в белках кровяной плазмы, печени, почек и слизистой кишечника. Он совершается, по-видимому, во всех тканях без исключения, так как даже белки сухожилий подвержены этому процессу обновления, хотя и протекающему в них с небольшой скоростью. В этих опытах шшла подтверждение идея А. Я Данилевского о том,, что организм в известный период времени обновляет весь свой состав... . [c.329]


Смотреть страницы где упоминается термин Состояние голодания: [c.515]    [c.35]    [c.384]    [c.209]    [c.228]    [c.464]    [c.408]    [c.411]    [c.153]    [c.92]    [c.190]    [c.700]    [c.36]    [c.566]    [c.110]   
Смотреть главы в:

Биохимия ТОМ 2 -> Состояние голодания




ПОИСК





Смотрите так же термины и статьи:

Голодание



© 2024 chem21.info Реклама на сайте