Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на процессы адсорбции Адсорбция из раствора

    Технико-экономические показатели процесса закачки ПАВ, капитальные вложения и эксплуатационные расходы непосредственно зависят от степени использования химического реагента во всем объеме пласта и в течение всего процесса вытеснения. Степень использования ПАВ, в свою очередь, зависит от интенсивности адсорбции ПАВ на поверхности пористой среды. Исследования БашНИПИнефть показали, что при нагнетании 0,05 %-ного водного раствора ОП-10 в водонасыщенные пористые среды адсорбция в зависимости от удельной поверхности пород изменяется в пределах 0,009—1,25 мг/г. При использовании растворов ПАВ в реальных нефтенасыщенных породах адсорбция меньше. Влияние температуры на адсорбцию ПАВ в пласте до 80 С несущественно. [c.85]


    Все сказанное относится только к такому процессу крашения, который доведен до состояния равновесия, когда при длительном времени пребывания волокна в красильной ванне скорости адсорбции красителя волокном и десорбции его из волокна выравниваются. В реальных же процессах крашения, когда волокно находится в красильном растворе в течение очень ограниченного времени, состояние равновесия практически никогда не достигается, и влияние температуры на результаты крашения может проявляться по-разному в зависимости от степени удаленности процесса от состояния равновесия. Чаще всего в реальных процессах крашения, особенно если они проводятся по непрерывной схеме, повышение температуры приводит не к понижению, а к возрастанию накрашиваемости волокнистых материалов. Происходит это потому, что повышение температуры одновременно сказывается как на адсорбционной, так и на диффузионной стадиях общего физико-химического цикла крашения. Под влиянием температуры эффективность адсорбции снижается, скорость же диффузии резко возрастает, и если процесс сильно удален от состояния равновесия, то накрашиваемость волокна увеличивается. [c.59]

    В литературе отмечается сложный характер влияния на процесс адсорбции температуры и природы растворителя [211, 214]. Это связано с необходимостью учета большого числа различных факторов, связанных с этими параметрами состояние клубка в растворе, которое зависит и от температуры, и от качества растворителя сила взаимо- [c.138]

    На заключительной стадии структурного капсулирования при изометрической термообработке пленок, поглотивших раствор в процессе вытяжки в жидкой среде, адсорбционные явления могут оказывать противоположное действие на состав жидкости, заполняющей капсулы, в зависимости от влияния температуры на адсорбцию растворенного вещества. В случае усиления адсорбции при нагревании раствора или независимости адсорбции от температуры ее повышение в системе, не достигшей за время вытяжки адсорбционного равновесия между полимером и раствором, увеличивает скорость диффузии молекул растворенного вещества и способствует более быстрому установлению адсорбционного равновесия, т. е. максимальной концентрации адсорбционно-активного вещества у поверхности полимера. При слиянии жидкости из микрополостей в структурные капсулы адсорбционное разделение компонентов раствора усиливается и в капсулы поступает раствор, обогащенный инертным компонентом. [c.93]


    Кунин и Майерс [10] подробно исследовали реакцию обмена ионов. Были изучены четыре синтетические анионообменные смолы нри различных условиях. Исследованию подверглось не только влияние концентрации и природы аниона, но также влияние размера частиц, добавления солей, температуры, степени завершения процесса, скорости размешивания и состояния гидратации частиц ионита. Большинство полученных результатов хорошо, объясняется на основании предположения о том, что медленной стадией в процессе адсорбции является диффузия через смолу, имеющую структуру геля. Энергия активации адсорбции хлористоводородной кислоты оказалась равной 6,6 кпал, что близко по величине к энергии активации при диффузии этого электролита в воде. Скорость адсорбции хлористоводородной кислоты из раствора в присутствии хлорида натрия оказалась больше скорости адсорбции из раствора ее в воде. Это явление Можно объяснить увеличением коэффициента диффузии с ростом ионной силы раствора. [c.44]

    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]

    Влияние температуры на сорбцию из водных растворов далеко не однозначно. Дело в том, что при сорбции на микропористых сорбентах веществ, размеры молекул которых близки к эффективным размерам пор, проникновение этих молекул в поры зависит от их кинетической энергии. При достаточной энергии (температуре) молекулы сорбата проникают в окна пор и сорбируются в противном случае происходит лишь незначительное поглощение на поверхности мезо- и макропор. Иными словами, сорбционная емкость повышается с ростом температуры это явление получило название активированной адсорбции [72]. В то же время физическая сорбция, как любой экзотермический процесс, в целом ухудшается с ростом температуры. Поэтому суммарное внешне фиксируемое проявление этих двух явлений (активированной и физической адсорбции) мо- [c.73]

    Рассмотрим влияние изменения растворимости от температуры на адсорбцию. Поскольку адсорбция — экзотермический процесс, повышение температуры должно вызывать уменьшение адсорбции. Это действительно всегда наблюдается при адсорбции газов и паров. При адсорбции из растворов, однако, не меньшую роль играет и то, как температура влияет на растворимость вещества. Если растворимость адсорбтива с повышением температуры увеличивается, адсорбция должна уменьшаться. При падении растворимости с нагреванием раствора адсорбция будет увеличиваться. Наложение этих двух факторов (экзотермичности процесса адсорбции и изменения химического потенциала раствора с изменением растворимости избирательно адсорбирующегося компонента) определяет суммарное влияние температуры на равновесие при адсорбции из растворов. [c.87]

    Процесс кристаллизации в существенной степени зависит от двух факторов от скорости кристаллизации и от числа зародышей кристаллизации, причем оба фактора сложным образом зависят от температуры при переохлаждении (т. е. от пересыщения). В сильно пересыщенных растворах число зародышей кристаллизации велико, вследствие чего происходит образование множества мелких кристаллов. В тех случаях, когда раствор пересыщен лишь в незначительной степени, процесс определяется скоростью кристаллизации. В этих условиях образуется лишь незначительное число кристаллов, которые зато отличаются крупными размерами. Мнение, что особенно красиво образованные кристаллы отличаются и высокой степенью чистоты, неверно, так как их загрязнение может быть обусловлено включениями маточного раствора. На чистоту кристалла также оказывают влияние образование смешанных кристаллов, адсорбция примесей на гранях и ребрах и на границах зерен. Вкратце остановимся на получении более крупных кристаллов, имеющем важное значение для кристаллографии. [c.133]


    На процесс адсорбции оказывают влияние такие факторы, как состояние поверхности поглотителя, природа поглощаемого вещества, температура, давление газа или концентрация растворов. [c.94]

    Различные пути воздействия ингибиторов на коррозионный процесс проанализированы Л. И. Антроповым [1, 28, 33, 36]. На основании этого анализа, а также с учетом многочисленных сведений о характере влияния ингибиторов на коррозионный процесс механизм ингибирования можно считать установленным, если известно следующее благодаря действию каких факторов замедляется коррозионный процесс, а также частные катодная и анодная реакции в виде каких частиц принимает участие ингибитор в электродном процессе (состав, заряд) механизм и изотерма адсорбции ПАВ на данном металле соотношение между степенью торможения электрохимического процесса и степенью заполнения поверхности адсорбированным ингибитором возможность и результат взаимодействия частиц ПАВ между собой и другими компонентами системы в объеме раствора и на поверхности металла какую из стадий катодной и анодной реакций преимущественно замедляет ингибитор. Для более полной характеристики механизма ингибирования кислотной коррозии представляют интерес также сведения о влиянии температуры на защитное действие, о составе промежуточных продуктов, об изменении физико-механических свойств металлов под влиянием ингибированных сред, о кинетике адсорбции частиц ПАВ и т. д. Однако большинство работ, посвященных механизму действия ингибиторов, содержит лишь отдельные сведения из числа приведенных выше. Поэтому достоверно судить о механизме ингибирования часто бывает затруднительно. [c.26]

    Наблюдаемые явления связывают с изменением структуры раствора вблизи поверхности кристаллов. Изменение структуры должно сказываться на изменении скорости процессов дегидратации, энергии адсорбции и других определяющих рост частиц процессов [20—22]. В пользу высказанных предположений говорит исчезновение температурных максимумов при добавлении к водному раствору спирта. Спирт сам по себе способен изменять структуру воды, что может компенсировать влияние температуры [221. [c.81]

    Схема всего процесса внутренней адсорбции, с которой связано появление склонности к межкристаллитной коррозии, может быть представлена следующим образом. После выдержки сплава при высокой температуре, когда межкристаллитные границы обогащаются какой-либо примесью, следует относительно быстрое охлаждение, препятствующее обратной диффузии примесей из области границ в зерна. Благодаря этому по границам зерен создается значительно большее пересыщение твердого раствора, чем в самом зерне. Из пересыщенного раствора при высоких или низких температурах выделяются вторичные фазы. Гетерогенность структуры может быть вызвана также выдержкой сплава при немного повышенной температуре, когда уже возможна диффузия и рост зародышей новой фазы в переходной зоне, пересыщенной одним из элементов, входящих в состав этой фазы. Образование такой структуры является причиной не только межкристаллитной коррозии, но и склонности к хрупкому межкристаллитному излому [44], так как оба эти явления связаны с выпадением карбидов по границам зерен. Так же как на границе зерен, внутренняя адсорбция может происходить и в местах структурных негомогенностей внутри зерен, например на плоскостях двойникования. В том, что указанные структурные негомогенности оказывают влияние на коррозионную стойкость, можно убедиться по фигурам травления таких структур или наблюдая явления, происходящие при коррозионном растрескивании [248]. Внутренняя адсорбция, связанная с составом сплава и его термообработкой, имеет для изучения коррозии очень важное значение и может оказывать решающее влияние на склонность не только к межкристаллитной, но и к другим видам коррозии. [c.45]

    Значительное влияние на эффективность адсорбции оказывает вязкость сырья, которая определяет скорость диффузии адсорбируемых компонентов в поры адсорбента. Для понижения вязкости очищаемого продукта обычно применяют растворители (легкие нефтяные фракции) и увеличивают температуру процесса. Первое также уменьшает концентрацию в растворе нежелательных веществ и приводит к повышению избирательности адсорбционного процесса. Однако чрезмерное разбавление сырья растворителем резко повышает энергозатраты на последующую его регенерацию. [c.142]

    На процесс адсорбции и прочность связывания фермента с носителем оказывают определенное влияние различные факторы внешней среды, основными из которых являются удельная поверхность и пористость носителя, значения pH среды, ионная сила раствора фермента, его концентрация, а также температура проведения адсорбции. Иными [c.86]

    Изотерма адсорбции. Капиллярная конденсация. Количество газа или растворенного вещества, адсорбируемое определенным количеством данного адсорбента, зависит и от вида газа или раствора, и о условий протекания процесса, в первую очередь от давления газа или концентрации растворенного вещества, и от температуры. При прочих одинаковых условиях влияние давления или концентрации газа на адсорбируемое количество его может быть изображено кривыми рис. 132, называемыми изотермами адсорбции. Наиболее типичной является верхняя кривая на рис. 132. [c.366]

    Токи полярографии. В зависимости от того, какая из стадий электрохимической реакции является наиболее медленной (разд. 4.1.3.2) —диффузия или химическая реакция, происходит ли адсорбция или каталитический процесс, различают диффузионный, кинетический, адсорбционный и каталитический токи. При этом возможен переход от одного вида тока к другому. Для распознавания каждого вида тока используют зависимости от концентраций деполяризаторов и от высоты столба ртути и исследуют влияние pH, концентрации, буферных растворов, температуры. [c.125]

    Скорость реакции каталитической гидрогенизации в растворах в сильнейшей степени зависит от величины адсорбции реагирующих веществ на поверхности катализатора. При этом соотношения концентраций на поверхности в момент реакции определяются скоростями активации водорода на поверхности и скоростью его снятия непредельным соединением. В зависимости от природы растворителя меняется коэффициент распределения растворенного непредельного соединения между раствором и поверхностью катализатора. В результате этих часто противоположных влияний на поверхности катализатора устанавливается в ходе процесса известное, временное равновесие, которое определяет лимитирующую стадию реакции. Для того чтобы установить механизм реакции в данных условиях и обнаружить лимитирующую стадию реакции, требуется обычно проведение длительных кинетических опытов, в которых исследуется влияние концентрации реагирующих веществ, продуктов реакции, температуры и природы растворителя на скорость реакции. При этом все же получаются не всегда однозначные выводы. Вместо этого можно измерять потенциал катализатора во время реакции и на основании этого сразу же получить представление о степени заполнения поверхности катализатора водородом и непредельным соединением [1]. В случае необходимости могут быть приняты меры для повышения активности катализатора как за счет изменения химического состава катализатора, так и за счет изменения природы растворителя или внесения в раствор солей, кислот и оснований. [c.153]

    Легкость регенерации сероводорода из растворов карбоната калия зависит от общих условий процесса. Так, было показано [94, 95], что-при температуре П 0°С десорбция сероводорода протекает легче, чем двуокиси углерода. Отношение сероводород двуокись углерода в поступающем на очистку газе оказывает на скорость адсорбции компонентов существенное влияние, которое до сего времени полностью не изучено. [c.357]

    Прп пропускании газа или жидкости через мелкораздробленный нерастворимый материал последний частично поглощает газ или жидкость. Количество поглощенного вещества зависит от свойств поглотителя, поглощаемого вещества и от внешних условий температуры, давления, концентрации. Это явление называется сорбцией, а поглощающий материал — сорбентом. Сорбцию, происходящую на поверхности сорбента, называют адсорбцией. Вещества могут сорбироваться в виде молекул или ионов и образовывать с сорбентом сорбционные соединения различной прочности. При изменении внешних условий (например, температуры), под влиянием растворителей, при действии химических реагентов может произойти обратный процесс — десорбция, при котором сорбированные вещества снова переходят в раствор или в газовую фазу. [c.427]

    Деполяризующее действие С1 распространяется и на несколько более отрицательные потенциалы, чем это следовало ожидать из кривых рис. 1. Последнее является следствием расширения области адсорбции С1 за счет влияния сорбированных на электроде добавок катионного типа [11]. На рис. 3 и 4 приведены опытные данные по влиянию концентрации ионов хлора на катодное выделение 5п и С(1 на ртутном капающем электроде из растворов с поверхностноактивными веществами. Во всех случаях с увеличением содержания ионов С1 скорость разряда монотонно возрастает. Торможение процесса особенно быстро исчезает при увеличении температуры. Поляризация снижается не только при разрушении адсорбционного слоя добавок и замены их на С1 , но уже при небольшом внедрении последних в существующий адсорбционный слой. [c.383]

    Количество газа или растворенного вещества, адсорбируемое определенным количеством данного адсорбента, зависит и от природы газа или раствора, н от условий протекания процесса, в первую очередь от давления газа или концентрации растворенного вещества, и от температуры. При прочих одинаковых условиях зависимость количества адсорбированного газа от давления или концентрации газа, устанавливающихся при достижении равновесия, может быть графически изображена кривой, представленной на рис. 121 и называемой изотермой адсорбции. Повышение давления газа, как правило, увеличивает его адсорбируемость. Однако на разных участках адсорбционной изотермы это влияние сказывается неодинаково. В особенности сильным Рис. 121. Изотер.ма адсорбции газа. оно бывает в области низких [c.412]

    Изотерма адсорбции. Капиллярная конденсация. Количество газа или растворенного вешества, адсорбируемое определенным количеством данного адсорбента, зависит и от вида газа или раствора, и от условий протекания процесса, в первую очередь от давления газа или концентрации растворенного вешества, и от температуры. При прочих одинаковых условиях влияние давления пли концентрации газа на адсорбируемое количество его [c.346]

    Рассмотрев все эти модели, можно сделать вывод, что детальный анализ процесса мытья даже в самых простых случаях очень сложен, так как при этом приходится учитывать влияние таких факторов, как скорость отдельных стадий процесса, повышение температуры, скорость пропитки раствором подкладки и загрязнений, скорость обеднения ванны, вызванного адсорбцией, воздействие механических условий процесса и др. Тем не менее такое моделирование полезно и имеет значительные преимущества перед старыми гипотезами о равновесном характере рассматриваемого процесса. [c.380]

    В качестве первых добавок этого типа были предложены свободные карбоновые кислоты и жирные глицериды, из которых эти кислоты получаются. Одним из первых специально приготовленных для этой цели веществ был метиловый эфир дихлорстеариновой кислоты. К соединениям, синтезированным сравнительно недавно, относятся высшие гомологи триалкилфосфатов и продукты, содержащие серу или сульфиды металлов. Механизм действия добавок для сверхвысоких давлений не вполне ясен, но, безусловно, наиболее существенную роль играет процесс интенсивной адсорбции . Поэтому вопросу имеется обширная патентная литература, но лишь немногие из продуктов, упоминаемых в этих патентах, применяются в производственных условиях. Для этого они должны не только быть экономически выгодными, но и обладать достаточной устойчивостью к действию повышенной температуры и давления и к каталитическому влиянию металла смазываемых поверхностей. Далее, добавка такого рода не должна вызывать коррозию, а также не должна ухудшать свойств масла, в котором она растворена. В автомобильные картерные масла указанные добавки обычно не вводятся, и используются они лишь для смазки мощных дизелей, авиационных двигателей, коробок передач заднего моста, металлопрокатных станов и в других случаях, где необходимо обеспечить высококачественную смазку в условиях высоких нагрузок (9]. [c.484]

    Изучение массопереноса кислорода из газовой фазы в жидкую указывает на значительную интенсификацию этого процесса цри добавлении в воду ПАУ [107]. При низких температурах и малых дозах ПАУ наибольшее влияние на эффективность процесса адсорбции кислорода водной суспензией ПАУ оказывают скорости массопереноса его из газа в раствор и адсорбции кислорода из раствора на поверхность АУ. При высоких температурах и дозах ПАУ процесс лимитируется массопереносом кислорода из газа в раствор и диффузией первого внутри зерна АУ. Снижение концентрации ПАУ и увеличение интенсивности аэрации усиливает влияние десорбции кислорода с АУ и уменьшает влияние массопереноса первого из газа в раствор на общую скорость процесса. Пневматическое перемешивание и аэрация в процессе биосорбции обычно эффективнее, так как создаются лучшие условия для контакта биомассы на поверхности АУ с воздухом. В биосорбционном процессе может применяться ПАУ, предварительно использованный для доочистки этих же стоков, что снижает расход ПАУ [96]. Введение ГАУ в аэротенк также интенсифицирует БХО. [c.99]

    Другая трактовка влияния Т1зА1 была предложена теми, кто отдает предпочтение взаимодействию водород — металл в качестве причины, вызывающей КР, т. е. присутствие Т зА1 приводит в результате к более быстрой абсорбции водорода. В работе [227] показано, что абсорбция водорода в процессе травления в растворах, содержащих фториды, происходит много быстрее в сплавах, содержащих в своей структуре Т1зА1. Однако в работе [81] получено, что адсорбция водорода при повыщенных температурах в сплаве Т1 —20% (ат.) А1, или 12,5% (по массе) А1, происходит медленнее, чем в технически чистом титане или сплавах Т1 — 8А1. В действительности, абсорбция водорода происходит наиболее быстро в титане, что является противоположным поведению при КР- [c.409]

    Влияние кислородсодержащих поверхностных функциональных групп активного угля на адсорбцию из растворов более или менее систематически исследовано только для адсорбции электролитов, т. е. тогда, когда причиной адсорбции являются ионообменные или электрохимические процессы [86, 92, 98, 100, 114— 119]. Гораздо меньше работ посвящено исследованию степени участия поверхностных групп в адсорбции органических соединений — неэлектролитов или слабых электролитов на углеродных сорбентах. А. В. Киселев, Н. В. Ковалева и В. В. Хопина [120] обнаружили, что циклогексан, бензол, толуол и нафталин адсорбируются на окисленных сажах и углях из растворов в гептане сильнее, чем на сажах и углях, освобожденных от окислов прокаливанием при высокой температуре. Увеличение адсорбции они считали следствием взаимодействия л-электронных систем ароматических ядер с сильно протонизированным водородом поверхностных функциональных групп. [c.50]

    Поскольку адсорбция — экзотермический процесс, повышение температуры должно вызывать уменьшение адсорбции. Действительно, это всегда наблюдаетс.ч при физической адсорбции газов и паров. При адсорбции из растворов не меньшую роль играет, однако, и то, как температура влияет на растворимость вещества и, следовательно, на величину химического потенциала его в равновесном растворе. В соответствии с этим одной и той же концентрации равновесного раствора с ростом температуры должны отвечать различные величины 0 или концентрации адсорбированного вещества. Если растворимость вещества с повышением температуры увеличивается, адсорбция должна уменьшаться при падении растворимости с нагреванием раствора адсорбция будет увеличиваться. Наложением этих двух факторов (экзотермич-ностью адсорбции и изменением химического потенциала раствора с изменением растворимости избирательно адсорбирующегося компонента) и определяется суммарное влияние температуры на равновесие при адсорбции из растворов [259]. [c.162]

    Адсорбция газов электродами и диспергированными твердыми телами происходит под влиянием физических и химических сил притяжения, действующих на поверхности этих тел. Подобным же образом, если раствор привести в контакт с твердым телом, в случае инертного растворителя возможна адсорбция растворенного вещества. К силам, ответственным за физическую адсорбцию, относятся дисперсионные (лондоновские) силы, короткодействующее отталкивание и дипольные силы в твердых телах теплота реакции имеет тот же порядок величины, что и теплота конденсации газов, т.е. приблизительно от 1 до 10 ккал моль . В случае хемосорбции происходит переход электронов между твердым телом и адсорбированным слоем, в котором принимают участие силы валентности, и теплота этого процесса фавнима с теплотой химических реаидда (10-100 ккал моль 1). Физическая адсорбция обратима, тогда как химическая необратима. Как в случае адсорбции газа, так и в случае адсорбции из раствора количество адсорбированного вещества на грамм твердого тела зависит от природы адсорбента и адсорбата, условий равновесия, включая температуру, давление, концентрацию. Физическая адсорбция газов на твердых телах максимальна вблизи точки кипения адсорбатов. Это обстоятельство широко используется для измерения поверхности и структуры пор в электродах. Химическая адсорбция в большинстве случаев происходит при таких значениях температуры, давления и соотношениях адсорбата и твердого тела, при которых можно ожидать начала химической реакции между адсорбатом и поверхностью твердого тела. Согласно Зммету [1], "химическая адсорбция имеет место в процессе посадки водорода на металлы, азота на поверх- [c.303]

    КОСТЬЮ какого.-либо вещества из окружающей среды. В очистке воды чаще используется ее разновидность— адсорбция — поглощение вещества из воды на поверхности или в объеме пор твердых тел (сорбентов). Сорбентами могут быть частицы углей, почвы и остатки растений, хлопья коагулянтов и активного ила, осадки сточных вод и т. д. Движущей силой сорбции является разность потенциалов взаимодействия сорбируемого вещества загрязнения (сорбата) с сорбентом и с окружающей средой (водой) при переходе части сорбата из среды на сорбент разность потенциалов уменьшается. При выравнивании потенциалов наступает динамическое равновесие, характеризующееся концентрацией сорбата в растворе Ср, равновесной соответствующей концентрации сорбата на сорбенте ар. Если в адсорбированном состоянии сорбат не претерпел изменений, необратимо изменивших его, то сорбцион-4НЫЙ процесс обратим. Обратный переход сорбата с адсорбента В раствор называется десорбцией. Сорбция, как все экзотермические процессы, чувствительна к температуре, но влияние температуры на ход працесса неоднозначно. [c.114]

    Большое влияние на энергию связи адсорбированного водорода оказывает растворитель. Спирты, кетоны, катионы металлов при адсорбции из растворов способны десорбировать с поверхности наиболее слабосвязанный водород [16, 17, 19]. В случае гидрирования жироз при комнатной температуре в этаноле резко снижается адсорбционная и реакционная способность эфиров олеиновой кислоты по сравнению с линолевыми радикалами, вследствие этого избирательность процесса резко повышается до абсолютной. Это мы наблюдали при гидрировании жиров на никель-кизельгуровом катализаторе (рис. 7, а, б), основная часть адсорбированного водорода которого слабо связана с поверхностью [18, 20]. Таким образом, избирательность гидрогенизационных процессов увеличивается при наличии в катализаторах однородного, прочносвязанного водорода, а также на смешанных палладиевых катализаторах, в присутствии которых благодаря растворению водорода возможно стадийное протекание процесса. [c.57]

    Соосаждение — это распределение микрокомпонента между раствором (жидкая фаза) и осадком (твердая фаза), причем микрокомпонент не образует в данных условиях собственной твердой фазы (теоретические аспекты соосаждения см. гл. 9). При соосаждении имеют место адсорбция, ионный обмен, окклюзия, изоморфное соосаждение, образование химических соединений и другие виды взаимодействия микрокомпонентов с компонентами осадка. На соосаждение мнкрокомпонентов оказывают влияние состояние микрокомпонента в растворе, кристаллохимические свойства осадка (структура, поверхность и др.), процесс старения осадка, кислотность раствора, порядок добавления реагентов, температура, время и другие факторы. Микрокомпонент соосаждается на коллекторе. [c.214]

    О соосаждении, вызываемом адсорбцией, принято судить по влиянию на его величину различных факторов. Изучается взаимодействие соосаждающегося катиона с заранее выделенным осадком, влияние посторонних катионов, температуры, скорости установления равновесия и обратимости процесса, влияние знака заряда поверхности. Рассмотрим подробнее влияние этих факторов. В случае адсорбции степень соосаждения в момент образования осадка или с заранее выделенным осадком не должна сильно отличаться. Однако и в случае соосаждения, вызываемого образованием химического соединения, наблюдаем ту же картину [5]. Далее, скорость адсорбционного процесса характеризуется быстрым протеканием, и количество увлеченного вещества в твердой фазе с течением времени не меняется. В случае соосаждения, вызываемого образованием химических соединений или твердых растворов, процесс протекает также быстро [3—-12, 46—49]. При изучении влияния посторонних катионов на величину соосаждения также наблюдаются несоответствия, выявленные и для других факторов. Поэтому ввиду сложности проблемы нам кажется целесообразным использование преимущественно метода физико-химического анализа (дополненного рентгенографическим исследованием), развитого в применении к аналитическим системам Тананаевым и Бабко, а также применение константы Хлопина и метода Коренма-на [79]. [c.229]

    Получение металлополимеров. Источником постоянного напряжения служил селеновый выпрямитель. Пластиночный анод и цилиндрический катод (вращающийся или стационарный) были сделаны из железа или кобальта, в зависимости от того, какой металлополимер получали. Для изготовления анода использовали железо Армко, для катода — тонкую жесть марки Ж08КП. Диаметр цилиндра катода, на который крепилась жесть, 30 мм. Кобальт марки чистый . Катод вращался со скоростью 9 об./жмн. Электролит представлял собой водный раствор хлористого железа или кобальта и соответствующей сини. Катодное и анодное пространства диафрагмой не разделены. Во время электролиза на катоде одновременно происходило 2 процесса выделение металлического железа или кобальта и адсорбция, а также коагуляция сини на поверхности выделяющихся на катоде кристалликов металла. Ранее указывалось, что скорость адсорбции и коагуляции сини на поверхности металла зависела от концентрации сини в растворе. Поэтому количество сини в катодном осадке зависело от концентрации ее в электролите, а также, но в гораздо меньшей степени, от плотности тока и температуры. Поэтому было уделено особое внимание влиянию этих факторов. [c.82]

    На скорость коррозионных процессов большое влияние оказывает также температура. В теплообменных аппаратах, охлаждаемых хлористым кальцием, температура достигает 60—70°С, поэтому возникла необходимость исследовать защитные свойства пенореагента в широком интервале температур. Были испытаны образцы углеродистой стали в растворе хлористого кальция, ингибированного пенореагентом, при различных температурах (от 15° до 100°С) рис. 2. Из рисунка видно, что защитное действие пенореагента проявляется до 60°, затем скорость коррозии возрастает и при температуре 100°С увеличивается по сравнению с 15°С в 9 раз. Увеличение скорости коррозии при повышенных температурах объясняется нарушением сплошности защитной пленки пенореагента на поверхности образцов в этих условиях, уменьшением адсорбции и снижением эффективности пенореагента. [c.227]

    С относительной концентрацией водорода и гидрируемого соединения на новерхности катализатора. Возможно, что введение экранирую1цих заместителей в ближайшем соседстве к хорошо адсорбирующейся непредельной группе, например — С = С— или —N02, уменьшит адсорбцию < оединения, увеличит доступ к поверхности молекул водорода и приведет, п конечном итоге, к увеличению скорости гидрирования. При этом подобные явления должны в разной степени проявляться на платиновых, никелевых и палладиевых катализаторах. Такой случай был найден О. П. Шмониной и К. Власовой при сравнении скоростей гидрирования нитробензола, п-нитроэтилбензола, о-нитроэтилбензола. Оказалось, что введение этильпой группы в ядро ускоряет гидрирование нитрогруппы иа скелетном никеле как в щелочном, так и в нейтральном водноспиртовом растворе. Причина такого ускорения становится ясной при изучении влияния концентрации реагирующих веществ и температуры на ход процесса. Оказалось, что увеличение, в условиях опыта, концентрации нитробензола вдвое ведет к резкому уменьшению скорости, а утроенная навеска восстанавливается с исчезающе малой скоростью. При гидрировании о- и п-нитроэтилбензолов увеличение концентрации гидрируемого вещества соответственно вдвое повышает скорость восстановления, и только с утроенной навеской скорость незначительно падает. [c.596]

    Целью настоящей работы явилось исследование образования твердых растворов в системах Zr —Nb и Ti —Nb в зависимости от температуры и выдержки в процессе синтеза, так как данных по кинетике их образования в литературе почти пет, несмотря на перспективность их использования в высокотемпературной технике Р" ]. Взятые в эквимолекулярном соотношении смеси выбранных карбидов подвергались виброизмельчению по методике [ ]. Характеристикой степени измельчения служила удельная поверхность, величина которой измерялась методом низкотемпературной адсорбции азота. Для выяснения влияния присадок на кинетику синтеза были выбраны Ni, Мо и корунд (ЭБ-320), значительно отли- [c.250]


Смотреть страницы где упоминается термин Влияние температуры на процессы адсорбции Адсорбция из раствора: [c.473]    [c.204]    [c.288]    [c.619]    [c.112]    [c.135]    [c.84]   
Смотреть главы в:

Физическая и коллоидная химия -> Влияние температуры на процессы адсорбции Адсорбция из раствора




ПОИСК





Смотрите так же термины и статьи:

Адсорбция влияние температуры

Адсорбция из растворов

Процессы адсорбцией

Температура, влияние на адсорбци



© 2025 chem21.info Реклама на сайте