Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производные циклогексена

    Выше упоминалось, что в процессе каталитического риформинга, кроме дегидрирования производных циклогексана, происходит конверсия пятичленных нафтенов. Простейшим случаем этой реакции является превращение метилциклопентана в бензол  [c.172]

    Олефины и бутадиены производные циклогексана  [c.301]

    Содержание ароматических соединений в бензине каталитического крекинга можно объяснить либо дегидрированием производных циклогексана, либо более просто отщеплением алкильных групп от молекул замещенных ароматических углеводородов, содержащихся в сырье. Малая дегидрирующая активность алюмо силикатов и тот факт, что толуол не обнаруживается в продуктах каталитического крекинга гептана при весьма жестких условиях, заставляют еще более сомневаться в возможности образования ароматических соединений при каталитическом крекинге в больших количествах благодаря дегидроциклизации. Представляется вполне вероятным, что ароматические соединения образуются из низших олефинов, которые всегда содержатся в реакционной массе при расщеплении цепей парафиновых углеводородов. Это подтверждается, например, идентификацией простых одноядерных ароматических углеводородов в продуктах, полученных из пропилена, и-бутенов, пентенов и гексенов. [c.333]


    Производные циклогексана циклогексан. ... [c.44]

    При гидрировании моноциклических ароматических углеводородов на промышленных катализаторах к молекуле одновременно присоединяется шесть атомов водорода с образованием соответствующего производного циклогексана. [c.59]

    Желающих более подробно ознакомиться с конформацией производных циклогексана мы отсылаем к специальным монографиям и обзорам [ 1, 36, 39]. [c.29]

    Сб. Стереохимия производных циклогексана . М., ИЛ, 1958. [c.43]

    Основное использование циклогексана — в производстве мономеров для синтеза волокон (адипиновой кислоты и капролактама). Некоторое количество циклогексана применяют в качестве растворителя в производстве пластмасс и синтетического каучука. Производные циклогексана (циклогексанон, циклогексанол, нитроциклогексан) используются в небольшом количестве в производстве красителей, лаков, смол, смазок (из нефтяных остатков) и инсектицидов. Примерная структура потребления циклогексана в США производство адипиновой кислоты — 60%, капролактама — 30 %, остальные производства — 10 %. [c.327]

    Таким же образом способны самоокисляться и некоторые производные циклогексена и циклогексадиена. Сам циклогексен в результате аутоксидации образует адипиновую кислоту - [c.241]

    Аналогичным образом дегидрируются двух- п трехзамещенные циклогексаны, причем присутствие водорода повышает их стабильность (до 400 "). Еще легче дегидрируются ненасыщенные производные циклогексана—циклогексен, циклогексадиен и их производные. [c.253]

    Ароматические альдегиды, кетоны и спирты прямым гидрированием в производные циклогексана с сохранением функциональной группы перевести нельзя, так как в первую очередь восстанавливаются функциональные группы  [c.375]

    Из приведенных схем видно, что изомеризация производных циклогексана с боковыми алкильными цепями разной длины и строения приводит к образованию наиболее стабильных изомеров—метилированных производных циклогексана. [c.575]

    Интересные результаты были получены при исследовании изомеризации производных циклогексана с боковой непредельной связью. Эти работы проводились Р. Я. Левиной для изучения механизма необратимого катализа Зелинского [47, 48]. Она установила, что при необратимом катализе независимо от положения непредельной С=С-связи сперва протекает постепенная изомеризация с перемещением двойной связи внутрь молекулы цикла (стр. 443). [c.576]


    Взаимосвязь между производными циклогексана ароматического и алициклического характера [c.794]

    Некоторые производные циклогексана способны реагировать в таутомерных формах и как производные бензола, и как алициклические соединения. Примером может служить флороглюцин, реакции которого объясняются то с помощью одной (I), то с помощью другой (II) формулы  [c.794]

    Производных циклогексана содержится значительно меньше. Разница молекулярного веса и температур кипения отдельных кислот определяется различной длиной боковых цепей циклонентанового кольца. Молекулярный вес может быть от 110 до 1000. [c.275]

    Рядом исследователей показано, что конфигурационная изомеризация является достаточно общей реакцией взаимные переходы циклических стереоизомеров под действием катализаторов наблюдались также в случае функциональных производных циклогексана, например для 1,4-диметоксициклогексанов [52], и некоторых дизамещенных гетероциклов. Установлено [52], что конфигурационная изомеризация стереоизомерных 1,4-диметоксициклогексанов на Pt/ протекает лишь в присутствии водорода. [c.81]

    Производные циклогексана широко распространены в природе, особенно в нофти, но лишь некоторые члены этой серии углеводородов имеются в продаже как индивидуальные продукты высокой степени чистоты, а именно циклогексан, метилциклогексан, этилциклогексан. [c.462]

    Реакция Дильса-Альдера. Универсальным и уникальным методом, широко применяемым для синтезов разнообразных производных циклогексенов с хорошими выходами, является реакция Дильса-Альдера. Следует различать два основных метода. Во-первых, получаются производные циклогексена (или гексадиена) (такие, как альдегид, кислота, эфир, кетон и др.) с последующим превращением их в углеводород по обычным реакциям. Во-вторых, осуществляется прямой синтез циклогек-сена (или гексадиена). Существует много превосходных обзоров [5, б, 8, 24, 81] по реакции Дильса-Альдера. Нортон делит синтезы на три основных типа [104]  [c.466]

    Даже в условиях гидрирования над алюмомедным катализатором при 325° С наблюдались значительные отложения углерода. В этих условиях индан разлагается на 60% е образованием 57 молярных процентов толуола, 33 молярных процентов н-пропилбензола, 3-молярных процентов бензола и, кроме того, углерода и производных циклогексана. Адкинс и Дэвис [1] нашли, что тетралин и аналогичные гидроароматические углеводороды дегидрировались при нагревании над никелевыми катализаторами и в присутствии бензола в качестве акцептора водорода. Соединения серы также эффективно способствовали переносу водорода. [c.112]

    Неосажденные углеводороды встряхиваются и промываются серной кислотой. Количество циклогексана и циклопентана легко может быть определено по анилиновой точке. Содержание среди осажденных углеводородов алкилзамеш,енных производных циклогексана и циклопентана легко вычисляется по разнице. Не исключена возможность и дальнейшего разделения, так как алкилзамещенные цикло-гексаны и циклопентаны реагируют легче, нежели разветвленные алифатические углеводороды. Неосаждаемые на холоду углеводороды начинают медленно осаждаться при однодневном стоянии и быстро при подогревании до 00—70°. [c.112]

    Каждое нз этих соединений может существовать в виде дбух геометрических изомеров. Основную часть продуктов димеризации (90—95%) составляют производные циклогексена. Все димеры образуются главным образом т транс-т-перилена. [c.347]

    Циклоалканы С5 и Се достаточно устойчивы, однако под влиянием хлорида и бромида алюминия подобно алканам претерпевают изомеризацию, причем происходит расширение или сужение цикла. Так, циклогексан превращается при 30—80°С в метилциклопентан. Реакция не протекает юличественно слева направо она останавливается в момент, когда состав смесн соответствует 75% циклогексана и 25% метилцик.юпентана. Пяти- и шестичленные углеродные циклы образуются значительно легче, чем меньшие и большие циклы. Поэтому в нефтях встречаются многочисленные производные циклогексана и циклопентана, в то время как производные остальных циклоалканов встречаются реже. [c.138]

    Кроме того, фенол, двухатомные фенол э1 и алкилфенолы могут быть получены из циклогексена и его производных окислением в присутствии хлорида палладия, эпокспдированием и гидроксили-рованием с последующим дегидрированием кислородных производных циклогексана  [c.285]

    Все монозамещениые циклогексаны находятся преимущественно в экваториальной форме, У двузамещенньгх 1,2 —производных циклогексана, транс-изомер может находиться в двух формах е,е и а,а. Форма е,е более устойчива, У полизамещенных циклопарафиновых углеводородов конформационная изомерия еще более сложная, В связи с таким разнообразием форм изомерии число возможных изомеров циклопарафиновых углеводородов резко возрастает с увеличением молекулярной массы, [c.61]

    Отщепление боковой цепи протекает в несколько стадий, поэтому при малой глубине превращения в продукте содержатся и частично гидродеалкилированные компоненты. Как правило, ароматические углеводороды с длинными боковыми цепями реагируют быстрее, чем с короткими, а полизамещенные —быстрее, чем монозамещенные. Нежелательной реакцией, протеканию которой способствуют низкое парциальное давление водорода и жесткие условия процесса, является конденсация ароматических колец. Эта реакция —первая на пути к дальнейшей конденсации, которая может привести к закоксованию реактора и катализатора. Крайне нежелательна также реакция превращения ароматических углеводородов в метан и производные циклогексана, дальнейший [c.290]


    На базе производных циклогексана и циклопентана получают фосфорорганические ПАВ циклоалканового ряда, содержащие в молекуле амидо- и дитиофосфорные группы [30]. ПАВ —продукты конденсации нефтяных кислот с этаноламином, взаимодействия получаемых оксиамидов нефтяных кислот с пентасульфидом фосфора и нейтрализации дитиофосфорных кислот едким натром. Оксиамиды получают при взаимодействии нефтяных кислот с избытком аминоспирта при 150—180 °С в течение 4 ч. Оксиамиды обрабатывают в течение 5 ч пентасульфидом фосфора при соотношении реагирующих веществ 4 1 и 100—120°С. Использование ПАВ, как добавки в скважины и трубопроводы при добыче и транспортировании парафиннстых нефтей снижает отложение твердых парафинов на 86—95 %. [c.329]

    Нефть арланского месторождения, расположенного в северо-западной части Башкирской АССР, является типичной высокосернистой нефтью этого района. Изучать углеводородный состав арланской нефти необходимо, чтобы выбрать направления ее переработки, а также использования получаемых из нее дистиллятов. Настоящая работа посвящена результатам изучения углеводородов ряда циклогексана, декалина и тетралина. Для изучения углеводородов ряда декалина и циклогексана нафтено-изопарафиновую часть фракций 180—200, 200—300 и 300—350 °С подвергали аналитическому дегидрированию на железо-платиновом катализаторе по методике, описанной в работе [8]. При дегидрировании производные циклогексана и декалина превращались соответственно в производные бензола и нафталина. Образовавшиеся ароматические углеводороды выделяли из-дегидрогенизатов адсорбционной хроматографией на силикагеле. Затем вторичные ароматические углеводороды разделяли на окиси алюминия на моно- и бициклические. Дегидрирование проводили в пять ступеней. Нафтено-парафиновые углеводороды фракций 180—200 и 200—300 °С дегидрировали в паровой фазе при 305—307 °С с объемной скоростью 0,6—0,7 ч а фракции 300—350 °С — в жидкой фазе при 315—320 °С. Из дегид-рогенизата фракции 180—200 С выделено 2,5% образовавшихся ароматических углеводородов, которые на 88,7% состоят из моноциклических и на 11,3%—из бициклических углеводородов. В пересчете на фракцию 180—200 °С циклогексановые углеводороды составляют 1,33%, декалиновые 0,17%. Из дегидрогенизата фракции 200—300° выделено 11,9% вторичных ароматических углеводородов, из которых на основе окиси алюминия получено 10,24% моноциклических и 1,66% бициклических углеводородов. Результаты дегидрирования и адсорбционного разделения дегидрогенизатов представлены в табл. 1—4. [c.19]

    В цитированной выше работе Л. Г. Жердевой также сделана попытка применить метод Липкина и Куртца к оценке строения циклов в масляных нафтеновых фракциях наших восточных нефтей. Авторы также приходят к заключению, что в высококипящих фракциях нефтей присутствуют производные циклогексана и циклопентана. [c.17]

    Из таблицы видно, что скорость дегидрирования быстро возрастает с температурой и становится практически одинаковой, начиная с 350°. Монозамещенные циклогексаны дегидрируются быстрее, чем сам циклогексан, причем величина алкильного углеродного скелета почти не влияет на процесс. Значительно быстрее дегидрируются производные циклогексана с несколькими боковыми цепями. [c.253]

    В ароматических кисло юдсодержащих соединениях—фенолах, кетонах, кислотах и т. п.—под действием водорода могут быть насыщены непредельные связи как в боковых цепях, так и в кольце, таким образом они превращаются в производные циклогексана. Например, при гидрировании фенола над Ы1-катализатором был получен циклогексанол с примесью циклогексанона и циклогексана  [c.371]

    Шестичленные циклы с двойными связями (ароматические соединения, ненасыщенные алициклические), как уже отмечалось, над N -катализатором можно превратить в производные циклогексана. Ненасыщенные семи- или восьмичленные кольца каталитически присоединяют водород, гидрируясь в циклогелтан или циклооктан. Так, например, циклооктатриен легко превращается в цик-лооктан  [c.379]

    Восстановление спиртов и фенолов в углеводороды. Восстановление алифатических спиртов в углеводороды протекает гораздо труднее, чем восстановление карбонилсодержаших соединений. Раньте пользовались нагреванием с избытком иодистоводородной кислоты, действием амальгам и т. п., теперь эти процессы очень гладко проводят, применяя Ni Ренея. В противоположность алифатическим, ароматические спирты восстанавливаются над Ni в углеводороды исключительно легко бензиловый спирт образует количественно толуол, фенилэтиловый—этилбензол и т. д. При избытке водорода происходит гидрирование бензольного кольца с превращением в производные циклогексана. [c.401]

    Восстановление фенолов протекает трудно. Над Ni при 150— 180" они гидрируются в соответствующие производные циклогексана, и лишь при 250—Я00° протекает превращение фенолов в ароматические углеводороды. Процесс .обесфенолирования имеет большое техническое значение в химии топлива. Многие продукты деструктивного гидрирования углей, смол и т. д. содержат до 50% фенолов R качестве топлива эти продукты непригодны, так как фенолы сильно корродируют моторы. Для превращения фенольных компонентов в углеводороды восстанавливают различные фракции смол под давлением 100—200 ат и при температуре 180—200 над oS-ката-лизатором или при 80 ат и 450—480° над такими стойкими ката-лн aтopaми, как MoSj, WS3 и др. Хорошие результаты дает также применение катализаторов из Л1. .Од. [c.401]

    Большое число работ по изомерным превращениям различных гомологов циклопентана провели М. Б. Турова-Поляк с сотрудниками [39]. Было установлено, что при 100° в присутствии Al lg любые алкилциклопентаны изомеризуются в соответствующие производные циклогексана. Одновременно с такой изомеризацией происходит диспропорционирование длинных боковых углеводородных цепей с образованием метилированных циклогексанов как наиболее стабильных продуктов реакции. Так, например, н-пропил-цнклопентан образует смесь 1,3- и 1,4-диметилциклогексанов  [c.571]


Смотреть страницы где упоминается термин Производные циклогексена: [c.86]    [c.302]    [c.314]    [c.130]    [c.289]    [c.254]    [c.508]    [c.102]    [c.347]    [c.318]    [c.211]    [c.105]    [c.14]    [c.268]    [c.377]   
Смотреть главы в:

Успехи органической химии Том 5 -> Производные циклогексена




ПОИСК





Смотрите так же термины и статьи:

Расщепление производных циклогексена



© 2024 chem21.info Реклама на сайте