Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий в реакции углеводорода с серой

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]


    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Парафины подвергаются также дегидроциклизации на катализа торах риформинга по бифункциональному механизму дегидрирование на платине, циклизация образовавшихся непредельных углеводородов на кислотных участках носителя. Наглядное подтверждение реальности такого механизма можно найти в работе [681. Из табл, 1,5 видно, что платинированный уголь не катализирует реакцию дегидроциклизации я-гептана, если к последнему добавить 0,01 % тио-фена (по массе, в пересчете на серу), но сохраняет высокую дегидрирующую способность. Концентрация гептенов не меняется при добавлении тиофена к гептану и близка к равновесной в примененных условиях. Не подвергается дегидроциклизации н-гептан при пропускании над оксидов алюминия. Однако реакция дегидроциклизации протекает, если н-гептан с указанной выше примесью тиофена пропускают над смесью платинированного угля и оксида алюминия. Суммарный выход толуола и алкилциклопентанов составил 70% от выхода, полученного при дегидроциклизации чистого н-гептана (без примеси тиофена) над платинированным углем. [c.35]

    Гидролиз алюминийорганических соединений. Активный оксид алюминия высокой чистоты с большой удельной поверхностью может быть получен гидролизом алюминийорганических соединений. В основе способа лежит реакция алюминийорганических соединений и их комплексов с водой в присутствии алифатических, алициклических или ароматических углеводородов либо без них с образованием тонкодисперсной суспензии гидроксида алюминия. Например, согласно работам [Заявка США 279508 пат. США 2682246], гидроксид алюминия получают гидролизом алкоголятов алюминия, содержащих Сг—Сгв на каждую группу спиртового остатка, с образованием суспензии, содержащей до 32% оксида алюминия. Водную фазу отделяют от органических продуктов, обрабатывают органическим растворителем (например, алифатическим спиртом i—С4 или ацетоном) с последующей термической обработкой. Полученный оксид алюминия имеет удельную поверхность от 250— 300 до 400—500 м /г, объем пор от 0,6—1,1 до 2—2,5 см /г и насыпную плотность от 120—160 до 320—560 кг/м он свободен от примесей натрия, железа и серы. [c.130]


    По признаку реакции с основаниями — аммиаком, аминами, едкими щелочами, алкоголятами — названы кислотами ароматические полинитросоединения, например тринитробензол (стр. 224). Но известно, что сходные комплексы они дают и с ароматическими углеводородами. Не следует ли считать, что последние при этом реагируют как основания Такое толкование можно было бы подкрепить фактом образования комплексов между ароматическими углеводородами и хлористым алюминием или двуокисью серы — типичными обобщенными кислотами. [c.242]

    Образование сложных эфиров. В зависимости от применяемого катализатора — хлористого алюминия, промотированного хлористым водородом, фтористого водорода или серной кислоты — продукты алкилирования иногда содержат небольшие количества соединений хлора, фтора или серы. Эти соединения обьпшо представляют алкильные сложные эфиры, образовавшиеся в результате присоединения хлористого водорода, фтористого водорода или серной кислоты к олефину. Их образование неизбежно сопутствует второй стадии механизма первичного алкилирования. При условиях, не благоприятствующих дальнейшему взаимодействию этих сложных эфиров с изонарафи-новыми углеводородами (нанример, реакциям стадии 1 или стадии 3), они остаются в алкилате в качестве примесей. Как правило, они образуются при тех же условиях, которые способствуют усилению полимеризации в результате алкилирования. При рационально выбранных условиях образование сложных эфиров крайне незначительно при промышленных процессах алкилат подвергают очистке для удаления образовавшихся сложных эфиров, [c.189]

    В первую очередь необходимо отметить реакцию изомеризации углеродного скелета парафиновых (алканов) и циклоларафиновых (цикланов) углеводородов, протекающую не менее интенсивно, чем изомеризация олефинов и циклоолефинов в присутствии алюмосиликатов или активированной окиси алюминия. Кроме того, эти катализаторы осуществляют ароматизацию как путем дегидрирования гексаметиленов и дегидроизомеризации пентаметиленов, так и путем дегидроциклизации парафинов [72, 73]. Кроме реакций изомеризации и ароматизации, для этих процессов весьма характерным является гидрокрекинг высокомолекулярных углеводородов, что позволяет получать высокооктановые бензины ш сырья с большим содержанием лигроиновых фракций [19]. Б процессах риформинга под давлением водорода происходит также почти полное обессеривание используемого сырья. Применяемые катализаторы обычно позволяют работать на сырье с содержанием серы до 0,5%, однако некоторое повышение рабочего давления предотвращает отравление катализатора и при более высоком содержании серы [20]. Следует отметить, что, несмотря на затраты водорода на реакции обессеривания и гидрокрекинга, выделение водорода при ароматизации настолько значительно, что в комплекс нефтеперерабатывающих заводов, кроме установок по риформин-гу, часто входят установки по гидрогенизации и даже по синтезу аммиака [18, 27]. [c.91]

    Предложены катализаторы — сульфиды некоторых металлов, например никеля, при 700—1000° С для процесса, в котором сероводород предварительно сжигается до серы, а в горячие продукты реакции вводятся углеводороды — метан, этан, пропан и др. [15]. В патенте [16] предлагается применять ацетат алюминия и хромо вую кислоту, нанесенные на насадку. [c.127]

    Для получения тиофена из углеводородов и двуокиси серы в присутствии окиси хрома на окиси алюминия при 350—550°, прямая цепь углеводорода должна содержать не менее, четырех атомов углерода. Мы установили, что еще два фактора оказывают влияние на ход реакции степень замеще ия у второго и третьего атомов углерода в такой четырехуглеродной системе и степень насыщенности ее [2]. [c.183]

    Бар и Петрик [31] изучали различные способы приготовления катализаторов из трехокиси молибдена, взятой в чистом виде и на носителе, а также и в смеси со щелочами или металлами — цинком, алюминием или хромом. Окись молибдена с окисью цинка оказалась наиболее активной, а кизельгур наи--лучшим носителем. Можно получить стабильный катализатор, смешивая трехокись молибдена, окись хрома и окись бария в пропорции 1 1 10, этот катализатор пригоден для восстановления фенолов смолы в циклические углеводороды. Указывалось, что трехокись молибдена может потерять активность не в результате отравления серой или образования высоко кипящих соединений продуктах реакции, а вследствие образования менее активной двуокиси молибдена. [c.289]

    Хлористый алюминий до сих нор применяется при глубокой очистке масляных дистиллятов для удаления чрезмерно больших молекул ароматического типа и соединений, содержащих кислород, азот и серу. В военное время он применялся для изомеризации нормального бутана в изобутан. Реакции синтеза с участием хлористого алюминия демонстрируются его способностью полиме-ризовать низшие олефины в масляные фракции и алкилировать с олефинами как изопарафины, так и ароматику. Многосторонняя реакционная способность хлористого алюминия иногда даже затрудняет его применение, так как легко протекают и побочные реакции. Подобные явления особенно часто наблюдаются в случае углеводородов с более высоким молекулярным весом.  [c.136]


    Исследования, посвященные каталитическим превращениям алифатических сульфидов без ввода водорода в реакционную зону извне, крайне ограничены изучались превращения только в присутствии алюмосиликатного катализатора [2, 3], окиси алюминия [4] и а-окиси железа [5] и в зависимости от условий проведения реакции отмечалась легкость разрыва связи углерод — сера с образованием водорода, предельных или непредельных углеводородов, сероводорода и меркаптанов, причем скорость их образования сильно зависела от строения исходного сульфида. [c.126]

    Еще в 1946 г. Наумовым [91 ], вероятно, впервые было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200° С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликагелем был предложен для получения активных катализаторов гидродеалкили-рования [92]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [93]. В настоящее время полифункциональные катализаторы широко применяют в основном в процессах превращения углеводородов [94, 95]. Чтобы провести сложное превращение веществ, приходится иметь дело с многоступенчатым процессом, протекающим в виде серии последовательных и параллельных реакций. В этом случае часто недостаточно эффективно применять один катализатор, так как при этом ускоряется лишь одна ступень процесса. [c.47]

    В конце 30-х гг. каталитич. методы за короткий срок заняли господствующее положение в технологии нефтепереработки. С помощью каталитич. крекинга углеводородов нефти на алюмосиликатных катализаторах ежегодно производятся сотни миллионов тонн высококачественного моторного топлива. Для улучшения качества бензинов в пром-сти переработки нефти широко используются каталитич. реакции циклизации и ароматизации углеводородов на платине, окиси молибдена или окиси хрома, нанесенных на окись алюминия. Очепь распространена и каталитич. десульфуризация нефтепродуктов — разложение оргапич. соедииений, содержащих серу, с выделением сероводорода, осуществляемая на катализаторе, содержащем кобальт и окись молибдена, нанесенные на окись алюминия. [c.231]

    На первом этапе развития процесса риформинга применялись алюмоплати-новые катализаторы, приготовленные на основе фторированной окиси алюминия. Катализаторы предназначались для работы при давлении 3,9—4,5 МПа с получением компонента бензина, имеющего октановое число 75 (м. м.). Содержание серы в перерабатываемом сырье достигало 0,1—0,15% (масс.). В указанных условиях основной реакцией, приводящей к образованию ароматических углеводородов, была реакция дегидрирования нафтенов. [c.158]

    Любое из индивидуальных соединений содержится в сырой нефти, естественно, в небольших количествах, поэтому до его выделения необходимо повысить концентрацию. Перегонкой можно грубо отделить широкую фракцию Се—Са, но даже в этой фракции содержание ароматических углеводородов довольно низкое. Цнкло-дегидрогенизацию алканов в арены осуществляют при высоких температурах и давлениях в присутствии металлических катализаторов. Обычно в качестве катализатора используют платину (плат-форминг) на оксиде алюминия высокой чистоты. На металлических центрах осуществляются реакции гидрогенизации — дегидрогенизации, а кислотные центры на оксиде алюминия необходимы для катализа процесса изомеризации. Реакции гидрокрекинга могут проходить на центрах общего типа. Платину обычно наносят на носитель в виде платинохлористоводородной кислоты, которая также образует кислотные центры на оксиде алюминия. Количество платины в катализаторе колеблется от 0,3 до 1,0% по массе, а процесс происходит при 500—525°С и давлении от 1,0-10 до 4,0-10 Па. Поверхность катализатора может легко дезактивироваться сернистыми соединениями и отложением кокса. Поэтому исходное сырье обессеривают до содержания серы <3 м. д. по массе и реакцию проводят в присутствии водорода, чтобы избежать отложения кокса. [c.323]

    Реакции гидрирования иногда проводят на сульфидах металлов. Чаще других применяют и упоминают в литературе сульфид молибдена. Вместе с никелем или кобальтом, а также с их сульфидами его наносят на оксид алюминия и используют для гидродеазотирования и гидрообессеривания. Эти катализаторы тщательно изучались, и о них широко сообщалось в литературе они были успешно использованы для превращения азот- и се-русодержащих соединений, обычно находящихся в углеводородах нефти. Однако в связи с угрозой перехода на сырье из битуминозных сланцев, нефти из нефтяных песков, тяжелых нефтяных остатков и продуктов ожижения каменного угля, в котором содержится значительно больше ароматических соединений и термоустойчивых соединений серы и азота, проблема усложняется. Возможно, что эти катализаторы придется сильно изменить, чтобы обеспечить удовлетворительную работу на новых источниках топлива. [c.109]

    Другой способ превращения смесей углеводородов (полученных деструктивной гидрогенизацией каменного угля, крекингом нефтяных продуктов или низкотемпературной сухой перегонкой каменного угля) в продукты, имеющие более высокую температуру ккпения, состоит в том, что эти углеводороды подвергают действию галоидов, веществ с подвижным атомом галоида, или галоидных соединений элементов от 111 до VIII группы периодической системы . Процесс этот осуществляется обычно при температуре ниже 100°. В качестве примера приводится такой случай 10 ч. среднего масла с темп. кип. 200— 270° обрабатывают 1—2 ч. хлоропроизводных метанового ряда и 1 ч. хлористого алюминия при температуре ниже 40° е таком растворителе, как например бензол. happell разработал способ, по которому углеводородные масла, содержащие нафтены, могут быть подвергнуты конденсации с продуктами хлорирования газообразных углеводородов в присутствии хлористого алюминия. Продукты поступают во вторую зону реакции, где их обрабатывают дополнительным количеством хлористого алюминия при более высокой температуре. При этом имет место, по словам автора, разложение с образованием бензина и высококипящего масла. Из твердого парафина или из углеводородов, средний молекулярный вес которых колеблется от 170 до- 250, в присутствии хлористого алюминия и таких агентов, как хлор, кислород или сера, может быть получено вязкое смазочное масло (с выходом в 50—60%) [c.226]

    В настоящее время считается, что крекинг различных групп углеводородов протекает главным образом по катионному или кар-боний-ионному механизму и вызывается кислотными группами на. поверхности катализатора. Предполагается, что образование иона карбония происходит путем обмена протонов, связанных с окисью алюминия на поверхности катализатора. Скорости реакций и механизм крекинга различных классов углеводородов подробно разработаны в главе, написанной Воджем в VI томе настоящей серии. Краткое описание многих реакций, называемых реакциями крекинга, можно найти во введении к указанной главе. [c.89]

    Использование в химической промышленности синтетического тиофена и его производных затруднено вследствие ограниченности их ресурсов и высокой стоимости. Тиофен и его гомологи можно получить следующими способами взаимодействием ацетилена с сероводородом [81] бутадиена [82—83] или изопентана [84] с элементарной серой диолефина с сероводородом в присутствии алюминия [85] термическим разложением ди-этилтетрасульфида и его аналогов [86] на основе углеводородов и сернистого ангидрида [87] и др. Все эти методы характеризуются сравнительно низки выходом конечного продукта на исходное сырье и побоч1ШМИ реакциями. С хорошими выходами тиофены получают дегидрированием циклических сульфидов. [c.66]

    Основные научные исследования относятся к органической химии ч общей химии. Изучал реакции двойного обмена кислорода на галогены между высшими окислами бора, серы и фосфора и галогеип-дами тех же элементов при отсутствии воды, а также между четыреххлористым и четырехбромпсты.м углеродом и бромистыми соединениями бора, кремния и фосфора. Выяснил (1873), что с увеличением атомной массы элемента в его хлористом соединении увеличивается количество атомов хлора, заменяемых на бром, и, наоборот, с увеличением атомной массы элемента в его бромистом соединенпи уменьщается количество атомов брома, заменяемых на хлор. Установил (1877) каталитическое действие галогенидов алюминия при бромировании ароматических углеводородов, изомеризации и крекинге ациклических углеводородов. Открыл (1877) непрочные комплексные соединения галоидных солей алюминия с различными углеводородами, обладающие каталитическими свойствами (ферменты Густавсона) Установил образование промежуточных комплексных металлоорганических соедине- [c.159]

    Для активационного анализа на быстрых нейтронах наиболее часто используют нейтронные генераторы. Особенно успешно применяют быстрые нейтроны для определения легких элементов, таких, как азот, кислород, фтор и медь. Для улучшения воспроизводимости и правильности анализа образец при облучении обычно вращают. Промышленные образцы генераторов на основе взаимодействия с тритием могут также давать поток нейтронов плотностью до 10 ° нейтр/см2-с. Ядерная реакция N(ra, 2 ) N позволяет определять содержание азота в различных основах. В [338] исследован матричный эффект нри установлении содержания азота в нефтепродуктах. Показано, что реакции С (р, y) N и С(р, n) N зависят только от весового количества углерода. Матричный эффект имеет линейную зависимость от веса углерода и может быть учтен при определении азота. Для оценки порядка, даваемого интерферирующими реакциями 0(р, a) N, С(р, n) N, (rf, n) N, введен азотный эквивалент [339, 343]. Результаты показали, что присутствие О и С в образцах вместе с Н ограничивает предел обнаружения азота, особенно при большом содержании воды. Вторичная же реакция С(р, п) может быть также использована для определения азота в углеводородах. Показана возможность обнаружения кремния в маслах [340], алюминия и кремния [341] —в нефти с использованием быстрых нейтронов. Разработана методика нейтронно-активационного определения кислорода, натрия и серы в нефти на основе ядерных реакций 0(д, p) N, 2зна(п, ц)2ор, З25(д р)32р соответственно [342]. Оценены возможности определения кислорода и серы в нефтепродуктах с использованием нейтронов с энергией 14 МэВ [344, 345]. С применением изотопных источников или генераторов нейтронов [322] можно [c.88]

    Легко соединяясь с кислородом, серой или хлором, а также — с магний-комплексами окись углерода не образует устойчивых соединений с галоидовородными кислотами. Однако, при взаимодействии хлористого водорода с окисью углерода все же происходит обычное для с присоединение НС1 и образование непрочного хлористого формила Н-С0-С1, который в присутствии хлористой меди и хлористого алюминия вступает в реакцию с ароматическими углеводородами, образуя альдегиды (метод Гаттермана-Коха). Эта реакция идет также и при замене окиси углерода пентакарбонилом, железа [c.52]

    Krau h 23 дает следующую классификацию катализаторов углеродная цепь разрывается ванадием, молибденом, вольфрамом, ураном и их окислами. Медь, нгг-кель, сера и селен склонны к проведению дегидрогенизации. Железо, хотя и снижает температуру крекинга и предпочтительно дегидрирует как ароматические, так и тидроаро матические углеводороды, вызывает также и реакции конденсации. Алюминий, предварительно активированный обработкой растворами некоторых солей металлов, часто вызывает разложение молекул при таких низких температурах, как 100—180°. Хлористый алюминий и треххлористый бор вследствие своего полимеризующего действия на олефиновые углеводороды являются хорошими катализаторами для получения смазочных масел Антидетонирующие соединения, как тетраэтилсвинец и карбонил железа, относятся к отрицательным катализаторам. [c.902]

    Меркаптаны, сульфиды и дисульфиды можно также превратить в углеводороды, пользуясь никелем Ренея. Этот вид никеля изготовляется обработкой силава никеля и алюминия едкой щелочью, которая растворяет алюминий, и, таким образом, остается тонкоизмельченный никель с г.одо-родом, адсорбированным его поверхностью. Водород — восстановитолг.ный реагент в этой реакции. Сера превращается в сернистый никель. [c.60]

    Отношение водород углеводородное сырье. При неизменных температуре, объемной скорости и обш,ем давлении отношение водород углеводородное сырье влияет на долю испаряющегося углеводорода, парциальное давление водорода и продолжительность контакта с катализатором. Каждый из этих факторов, в свою очередь, влияет на достигаемую степень превращения. При увеличении этого отношения степень превращения, в зависимости от условий процесса, может увеличиться или снизиться [2П. По мере увеличения количества водорода доля углеводородного сырья, находящегося в парообразном состоянии, увеличивается возрастает и парциальное давление водорода. Оба эти механизма способствуют увелиг чению скорости реакции. Однако с дальнейшим увеличением количества водорода после полного испарения углеводорода парциальное давление углеводородного сырья и, следовательно, степень превращения снижаются это снижение не всегда компенсируется увеличением степени превращения в результате повышенного парциального давления водорода. Из всего сказанного очевидно, что при прочих неизменных условиях процесса по мере роста отношения водород углеводородное сырье степень превращения проходит через максимум. Это подтверждается и экспериментальными данными [21], полученными при жидкофазной гидроояистке ближневосточного прямогонного газойля с пределами кипения 250—350 °С, относительной плотностью 0,8448 и содержанием серы 1,25%. Процесс проводили в присутствии кобальтмолибденового катализатора на окиси алюминия при давлении 52,5 ат, температуре 377 °С и объемной скорости по жидкому сырью 2,4 Результаты этой работы (рис. 4) показали, что максимальная полнота обессеривания достигается в точке, соответствующей полному испарению сырья. Отношение водород углеводородное сырье, при котором достигается максимальная степень превращения, зависит от летучести углеводорода, температуры и общего давления в системе и, возможно, от концентрации инертного газа. [c.213]

    Реакции ионного присоединения сероводорода к олефиновым углеводородам проводили в присутствии многих катализаторов, например серы, серной кислоты, катализаторов реакции Фриделя — Крафтса, окиси алюминия, сульфидов и полисульфидов металлов и двуокиси кремния. При этих реакциях образуются продукты нормального присоединения по правилу Марковникова, за исключением некоторых реакций, проводившихся при высокой температуре в присутствии сульфидов металлов в качестве катализатора, в результате которых образовались как нормальные, так и аномальные аддукты [207]. Катализаторами реакций ионного присоединения к а, 3-непредельным карбонильным соединениям и нитрилам являются алкоголяты, амины и ацетат натрия, а образование а-меркаптоэтиловых эфиров в результате присоединения к виниловым эфирам катализируется кислотами. По вопросу присоединения сероводорода к олефинам имеются обзоры Кнунянца и Фокина [70, а также Найлора [194, 208]. [c.214]


Смотреть страницы где упоминается термин Алюминий в реакции углеводорода с серой: [c.124]    [c.129]    [c.6]    [c.129]    [c.124]    [c.55]    [c.84]    [c.214]    [c.190]    [c.37]    [c.175]    [c.281]    [c.4]    [c.37]    [c.175]    [c.623]    [c.472]    [c.289]    [c.128]    [c.493]    [c.468]    [c.493]    [c.70]    [c.71]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий реакции



© 2025 chem21.info Реклама на сайте