Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракция в технологии органических веществ

    ПРИМЕНЕНИЕ ЭКСТРАКЦИИ В ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.421]

    Жидкостная экстракция (или экстрагирование) заключается в избирательном растворении некоторых компонентов жидкой смеси. В результате получаются две жидкие фазы раствор извлеченных компонентов и оставшаяся часть смеси. Этот метод широко применяется в технологии органических веществ. [c.18]


    Экстракция e технологии органических веществ [c.660]

    По масштабам производства на первом месте стоит применение экстракции в нефтяной, пищевой и коксохимической промышленности. Кроме того, экстракция получила разнообразное, хотя и меньшее по объему, применение в различных отраслях химической технологии органических производств (например, в фармацевтической промышленности) и еще меньшее в технологии неорганических производств. Новой и многообещающей областью применения жидкостной экстракции является быстро развивающаяся в настоящее время ядерная энергетика. Приготовление основных исходных растворов и вспомогательных материалов (имеется в виду производство естественных радиоактивных веществ), а также процессы регенерации продуктов распада, образующихся в атомном реакторе, в значительной степени основываются на экстракции. [c.379]

    Для экстракции применяют экстракторы разнообразных типов, В технологии неорганических веществ наибольшее распространение получили смесители — отстойники и колонны. Смеситель-отстойник состоит из камеры смешения и отстойной камеры. Принцип действия его заключается в следующем. Турбинная мешалка засасывает смесь органической и водной фаз через патрубок и выбрасывает ее в камеру смешения. Из камеры смешения эмульсия поступает в камеру отстаивания, из которой водная фаза засасывается через отверстие в нижней части разделительной перегородки в смесительную камеру следующей степени п + 1). Органическая фаза переливается через отверстие в верхней части перегородки в смесительную камеру ступени п— 1, Каждый единичный экстрактор работает как прямоточный аппарат, а в целом экстрактор работает по принципу противотока. Смесители-отстойники могут просто собираться в каскады с любым заданным числом ступеней (рис. 102, 103). [c.337]

    Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешивающихся с водой. На этом основана экстракция соединений актиноидов органическими веществами из водных растворов. Экстракционные процессы нашли широкое применение в технологии выделения и разделения близких по свойствам актиноидов. [c.452]

    Мы начнем рассмотрение технологии регенерации адсорбентов с методов, отнесенных к первой группе. Все они могут быть объединены в группу рекуперативных методов регенерации адсорбентов. Существуют три основных способа рекуперативной регенерации адсорбентов — перевод адсорбированных соединений в ионизированное состояние, в котором молекулы органических веществ из водных растворов адсорбируются очень слабо, отгонка адсорбированных молекул с водяным наром илн испарение их в ноток инертного газа-теплоносителя и экстракция адсорбированных веществ органическими растворителями с последующим удалением этих растворителей из адсорбента одним из перечисленных выше приемов. [c.185]


    Эффективность применения органических реагентов в аналитической химии (экстракция, концентрирование, органические ионообменники) и в технологии (тонкие методы выделения, разделения и очистки веществ) очевидна и не нуждается в комментариях. Здесь нам хотелось бы отметить ту тенденцию в развитии фотометрических методов определения элементов с органическими реагентами, которая проводится в течение последних лет и на которую в свое время обратил внимание А. П. Виноградов [1],— это разработка прямых методов определения микроколичеств элементов, без отделения от основы, т. е. методов экспрессных, пригодных для автоматических схем анализа. В тех случаях, когда прямые методы анализа невозможны, стремятся ограничиться только минимально необходимыми операциями, по возможности простыми и быстрыми, например экстракцией, йли же более длительными, но поддающимися автоматизации, например хроматографией. [c.123]

    Так, литература по экстракционно-фотометрическому анализу смесей алкалоидов в систематическом каталоге будет располагаться в разделах, посвященных химии Методы аналитической химии (экстракция), Методы анализа органических веществ (экстракция), Количественный микрохимический анализ (экстракция) физике Фотометрические методы. Определение оптической плотности (экстракция) медицине Фармакология вопросы очистки лекарственных веществ, определение ядовитых веществ технике Способы разделения и очистки смесей, Методы получения и анализ веществ осо-бой чистоты. Криминалистические исследования юридическим наукам Следственная практика, Использование методов химии, технологии и анализа в следственном деле. [c.250]

    Технология производства синтетического каучука, синтетического спирта и ряда смежных продуктов органического синтеза предусматривает в ряде процессов первичную очистку сточных вод, основанную на отгонке углеводородов в токе водяного пара, экстракции органических веществ различными растворителями, ионном обмене, каталитическом окислении органических веществ, выделении ингредиентов в виде плохо растворимых соединений и др. [c.29]

    Одним из эффективных методов разделения веществ в неорганической технологии является экстракция компонентов из водных солевых систем органическими растворителями. Этот метод позволяет, например, извлекать рассеянные и редкие элементы, а также цветные и другие металлы из растворов, полученных в результате кислотного разложения природных руд получать концентрированные кислоты из разбавленных растворов без их выпаривания смещать реакции обменного разложения в сторону образования требуемых кислот и солей осуществлять реакции, не идущие в водных системах производить кристаллизацию солей из водных растворов, экстрагируя из них воду и др. [c.315]

    Номенклатура веществ (продуктов), получаемых химической и смежными отраслями промышленности, исчисляется ныне десятками тысяч наименований. Разумеется, ни одной науке в рамках химической технологии не под силу изучить даже небольшую часть процессов получения этих соединений. Поэтому каждая наука классифицирует упомянутые соединения и процессы по каким-то существенным признакам, например по типу веществ (органические, неорганические, полимерные иногда с более дробной рубрикацией) по фазовому состоянию (гетерогенные процессы или гомогенные в жидкой, газовой или твердой фазе) по условиям проведения процесса (высоко- и низкотемпературные, под высоким или низким давлением и т. д.). ПАХТ классифицируют процессы по элементарным технологическим приемам (например, фильтрование, экстракция, сушка, гранулирование) таких приемов — около двух десятков. При этом рассмотрение технологических приемов в рамках ПАХТ ведется в общем — безотносительно к участвующим в процессе веществам, численным значениям их конкретных свойств и параметров процесса. Эта конкретика проявляется уже в ходе применения методов ПАХТ к инженерному расчету того или иного технологического процесса и реальному его воплощению — при совместных действиях специалистов в области ПАХТ и технологии производства интересующего нас продукта. [c.31]

    В настоящее время жидкостная экстракция применяется в химической технологии, гидрометаллургии и аналитической химии для извлечения, разделения, концентрирования и очистки веществ. Экстракционные процессы используются в производствах органических продуктов, антибиотиков, пищевых продуктов, редкоземельных элементов, ряда редких, цветных и благородных металлов (примерно три четверти мирового производства меди получают методом реактивной экстракции из водных растворов), в технологии ядерного горючего, при очистке сточных вод. [c.1105]

    К нейтральным экстрагентам относятся соединения, способные к образованию донорно-акцепторной связи простые и сложные эфиры, кетоны, органические окиси и т. д. Наибольшее распространение в технологии нашли сложные эфиры фосфорорганических кпслот, представителем которых является трибутилфосфат (ТБФ). Во всех эфирах, кетонах и окисях содержится атом кислорода с повышенной электронной плотностью, обусловливающий образование связи с извлекаемым веществом. Характер этой связи зависит как от типа кислородсодержащего экстрагента, так и от природы извлекаемого вещества. Экстракция тем значительнее, чем выше электронная плотность у атома кислорода в молекуле экстрагента. [c.404]


    Наиболее проста технология переработки люцерны на порошок, так как в данном случае отсутствуют сложные процессы экстракции веществ летучими органическими растворителями, и все операции сводятся лишь к сушке травы и ее измельчению. Рациональная переработка люцерны на порошок может дать большой эффект, так как при этом сохраняются в препарате и организмом утилизируются не только витамины, но и белковые вещества, и минеральные соли, которыми богата люцерна. Задача заключается в том, чтобы в порошкообразном продукте максимально сохранить содержащиеся в свежей траве витамины. [c.138]

    Благодаря избирательности, быстроте и простоте технологии экстракционный метод переработки ОЯТ считается наиболее современным. Экстракционные процессы имеют ряд преимуществ перед осадительными методами. Прежде всего, переход вещества в органическую фазу сравнительно мало зависит от его исходной концентрации и может быть осуществлён практически из весьма разбавленных растворов, что позволяет извлекать микроколичества вещества. Экстракционное равновесие устанавливается, как правило, быстро (в течение нескольких минут), и процесс проводится при умеренных температурах. Используется очень простое и компактное оборудование. При экстракционной переработке резко сокращаются объёмы сбросных высокоактивных растворов. Кроме того, наличие жидких фаз позволяет легко осуществить экстракцию в виде высокопроизводительного противоточного процесса, оснащённого современными средствами автоматизации. [c.516]

    Из отходящих газов вначале рекуперируют унесенные ими летучие вещества, очищают эти вещества от вредных примесей и нередко дожигают в специальных печах. Из сточных вод также рекуперируют ценные вещества, а затем эти воды очищают от токсичных примесей методами отпаривания, экстракции, адсорбции, окисления, микробиологической очистки. Жидкие или твердые органические отходы сжигают в печах, генерируя водяной пар тех или иных параметров. Все эти способы применяли и раньше, новая же тенденция состоит в осуществлении единой системы мероприятий, исключающей попадание в окружающую среду вредных веществ в количествах, превышающих санитарные нормы, и называемой малоотходной технологией. С целью сохранения водных ресурсов эту технологию нередко дополняют системой замкнутого водооборота, при которой технологические и сточные воды после соответствующей обработки и очистки возвращают в производство. [c.21]

    В настоящее время экстракцию широко используют для концентрирования одного или нескольких компонентов, разделения близких по свойствам веществ и очистки вещества. Ее применяют в процессах переработки нефти для разделения ароматических и алифатических углеводородов, в химической технологии, в том числе для разделения изомеров, обезвоживания уксусной кислоты, при получении различных лекарственных препаратов, например антибиотиков, и др. Особенно успешно используется экстракция в гидрометаллургии в технологии урана, бериллия, меди, для разделения близких по свойствам металлов — редкоземельных элементов (циркония и гафния, тантала и ниобия), никеля и кобальта и т. д. Экстракционные методы применяют для опреснения воды, переработки промышленных сбросов с целью их обезвреживания, а также использования их полезных компонентов. Наконец, экстракция широко используется в аналитической химии и как метод физико-химического исследования. В настоящее время на основе химических и физико-химических представлений можно подобрать экстрагент для извлечения практически любого органического или неорганического соединения. [c.6]

    В настоящее время в экстракционной практике не находят применение (за редким исключением) чистые растворители (экстрагенты) типа простых эфиров, спиртов, кетонов и др., обладающие низкой экстракционной способностью. Обычно используются органические соединения (нейтральной,кислой или основной природы), с высокими экстракционными свойствами, которые в силу своих физических и химических особенностей разбавляются так называемыми инертными разбавителями до приемлемых в технологии концентраций. Таким образом, уже вследствие производственной необходимости реальные системы неэлектролитов оказываются как минимум трехкомпонентным и (экстрагент — разбавитель — экстрагируемое вещество), причем природа разбавителя обычно оказывает существенное влияние на технологические параметры экстракционного процесса. Обсуждая процессы, протекающие в органической фазе при экстракции, Розен [217, 218] ограничивается рассмотрением случая, когда диэлектрическая проницаемость смешанного органического растворителя мала и диссоциация экстрагируемых соединений в фазе экстрагента не имеет практического значения (например, системы ТБФ — предельные углеводороды в определенной мере приближаются к подобным смесям, причем тем, сильнее, чем ниже концентрация ТБФ). Только подобные системы можно с полным правом назвать системами неэлектролитов и применить к ним соответствующую теорию растворов. [c.44]

    Производства основного органического синтеза и мономеров для синтетических каучуков всегда имеют дело со сложными, часто трудноразделяемыми смесями, из которых необходимо выделять индивидуальные вещества высокой степени чистоты. Поэтому технологи вынуждены использовать все средства разделения, которыми располагает химическая техник . Применяются практически во всех производствах процессы дробной конденсации, абсорбции, ректификации, очень часто экстракции, адсорбции. Во многих случаях эти типовые массообменные процессы не обеспечивают высоких требований к чистоте продуктов, иногда же они либо бессильны, либо технически и экономически нецелесообразны. Тогда прибегают к более сложным способам, таким, как азеотропная и экстрактивная ректификация, массообменные процессы (абсорбция, экстракция, ректификация) в сочетании с химической реакцией, наконец, новые методы, пока еще мало развитые диффузия через непористые мембраны, обратный осмос, применение соединений включения. [c.333]

    В технологии органических веществ процесс экстракции применяется с конца прошлого века в 1883 г. был запатентован метод концентрирования уксусной кислоты экстракцией ее этилаце-татом. Развитие нефтеперерабатывающей промышленности привело к созданию крупномасштабных экстракционных производсти. В отличие от экстракции органических веществ, для которой достаточно очень слабого взаимодействия между извлекаемым веществом и экстрагентом, экстракция неорганических соединений возможна только в результате химического взаимодействия между извлекаемым веществом и экстрагентом при энергии связи до нескольких десятков кДж/моль (при большей энергии связи будет затруднена реэкстракция). [c.197]

    Выделение органических соединений из растительного ья осуществляется человеком издревле При всем раз-бразии технологий и приемов получают две большие уппы органических веществ водорастворимые (углево-, аминокислоты, белки, витамины, алкалоиды и др) и астворимые в воде, среди которых — это, в первую оче-дь, эфирные масла, смолы, живица Смола, выделяющаяся при надрезе (подсочке) коры и ужных слоев древесины растущего хвойного дерева, на-аемая живицей, и эфирные масла — летучие маслянис-е вещества (не оставляют масляного пятна после испарена поверхности бумаги, ткани), образующиеся в расте-, особенно в цветах, обладающие приятным запахом, но нашли разнообразное применение Эфирные масла выделяют из растений отгонкой с во-1М паром, экстракцией растворителями, отжиманием ессованием) [c.353]

    Применение экстракции в технологии неорганических веществ (исключая металлургию) сравнительно ограничено. Это обусловлено тем, что одним из несмешивающихся растворителей в экстракции чаще всего является вода, другим — органический растворитель. Растворимость же неорганических веществ в органической среде обычно невелика. Тем не менее жидкостная экстракция получила распространение в некоторых важ1Ш1х процессах разделения этой области технологии. [c.650]

    Экстракция по сольватному механизму нитратов урана, тория, трансурановых и редкоземельных элементов трибутилфосфатом и другими нейтральными фосфорорганическимн соединениями широко применяется в технологии. Дальнейший прогресс в этой области связан с разработкой и внедрением в практику новых экстрагентов группы фосфат — фосфоиат — фосфинат — фосфиноксид, а также других п-доноров классов К Э и R 3Z (где Э — N, Р, As, S, Se, Те Z — более электроотрицательный элемент, чем Э). В частности, за последние годы наметились перспективы применения в технологии неорганических и органических веществ сульфидов [c.64]

    Выделение продукта трансформации — гидрокортизона (III стадия). Культуральная жидкость вместе с мицелием после П-й стадии поступает на сепарацию. Отделенный мицелий промывается, промывные воды присоединяются к основной культуральной жидкости. Далее производится экстракция-сепарация продукта трансформации из водной среды органическим растворителем. Осветленный активированным углем экстракт подвергается многократному упариванию с различными растворителями, осветлению, снова упариванию досуха и лромывке подходящим растворителем. Последние приемы обработки готового технического продукта обычны для технологии получения многих органических веществ и лекарственных препаратов. Получение чистых лекарственных форм гидрокортизона проводится традиционными методами. [c.102]

    Экстракция. Закон распределения широко применяется при расчетах экстракционных процессов —процессов переноса растворенного вещества из водной фазы в несмешиваюшуюся с ней органическую фазу. Метод экстракции широко используется в химической и фармацевтической промышленности, в металлургии цветных и редких металлов, в атомной технологии и радиохимии, в аналитической химии. [c.427]

    Экстракция каротина. Большинство исследователей [14, 16, 18] сходятся на применении в качестве органического растворителя для экстракции -каротина хлорированных углеводородов (в основном дихлорэтан). Существует мнение (А. Вечер [ 14 ]) о целесообразности предварительной экстракции белкового коагулята спиртом для удаления стеринов, фосфа-тидов, свободных жирных кислот и других веществ. Однако дополнительная экстракция спиртом сильно осложнит технологию производства, поэтому необходимость этого процесса нуждается в технико-экономическом обосновании. Экстракцию осуществляют дихлорэтаном в экстракторах непрерывного действия (при крупном производстве) или в аппаратах типа Сокс-лета при небольших масштабах производства. Дихлорэтана в реактор / (рис. 96) загружают 400% к массе сухого коагулята. Экстракцию ведут в течение 1—1,5 ч. Содержание каротина в шроте не должно превышать 5% к введенному каротину с белковым коагулятом. Затем в испарителе 2 в присутствии СО2 отгоняют дихлорэтан (температура не должна быть выше 50° С). [c.406]

    Сравнение биологической очистки сточных вод от поверхностноактивных веществ и таких химических или физико-химических методов как фотоокислепие, пенная сепарация, экстракция растворителями, поглон1,с[1ие сорбентами и ионитами, показало, что биологическая очистка снижает БПК, содержание органического углерода и ПАВ в сточной воде в среднем на 77%, при фотоокислепии эти показатели снижаются на 99%, при пенной сепарации — на 95—96%, при коагуляции, проводимой при pH 4—5, — на 90%. Экстракцией удаляют 50—60% ПАВ, ионным обме[гом н обратным осмосом 99% [41]. Таким образом, практически все перечисленные физико-химические методы позволяют достаточно полно извлекать ПАВ нз сточных вод. Возможность их применения определяется тем, насколько отработана и совершенна технология использования того или иного метода и каковы границы ее применимости в конкретных производственных условиях. [c.255]

    Лабораторией технологии фитохимичееких производств (ТФП) ГНЦЛС проведены исследования по разработке технологии экстракции липофильных биологически активных веществ сжиженными газами в замкнутом цикле, где в качестве экстрагента используют сжиженные газы -хладоны. Как известно, большинство органических растворителей токсичны, огне- и взрывоопасны. Процесс экстрагирования продолжителен во времени, а для удаления растворителей из экстрактов требуется создание высоких температур, что разрушающе действует на извлекаемые вещества и требует дополнительных энергетических затрат. Использование в качестве экстрагентов сжиженных газов дает возможность сократить продолжительность процесса экстрагирования, вести процесс при щадящем температурном режиме (18-25°С), получая при этом малополярные природные комплексы, исключить воздействие высоких температур на стадии концентрирования, тем самым улучшая качество целевых продуктов [1,4]. [c.482]

    Экстракция в системах электролит — неэлектролит является широко распространенным процессом в технологии редких, радио-а[ тиБНЫх, цветных металлов и неорганических веществ. Главная черта этого процесса состоит в том, что извлечение вещества из вод-но11 в органическую фа.чу происходит в результате химического взаимодействия гидратированных ионов с экстрагентами с получением соединений, растворимых в избытке экстрагента или в инертном разбавителе. Реэкстракция вещества в водную фазу также связана с предшествующими химическими процессами разрушения экстрагируемых соединений. [c.379]

    Подобно шиповнику люцерна является природным поливитаминным концентратом По содержанию каротина люцерна превосходит морковь, а по содержанию аскорбиновой кислоты не усту пает черной смородине Люцерна также содержит витамин К, витамины группы В и другие Так как витамины А и С являются наиболее дефицитными, то люцерна, как источник этих витаминов, представляет значительный интерес Технология переработки люцерны на концентраты витаминов С, К и каротина не изучена Наиболее проста технология переработки люцерны на порошок, так как в данном стучае отсутствуют сложные процессы экстракции веществ летучими органическими растворителями, и все операции сводятся лишь к сушке травы и ее измельчению Рациональная переработка люцерны на порошок может дать большой эф фект, так как при это% сохраняются в препарате и организмом утилизируются не только витамины, но и белковые вещества, и ми неральиые соли, которыми богата люцерна Задача заключается в том, чтобы в порошкообразном продукте максимально сохранить содержащиеся в свежей траве витамины [c.138]

    В современной технологии для глубокой очистки и извлечения ценных компонентов довольно часто применяются последовательно процессы экстракции и сорбции. Так, например, в гидрометаллургии за сорбционным извлечением металла из рудных пульп или растворов следует экстракционное рафинирование. Сорбция из органической фазы или экстракция непосредственно из сорбента без перехода через водную фазу могли бы служить прекрасным способом дополнительной очистки и концентрирования вещества, сокращающим одну из операций. Однако массообмен между твердой фазой — сорбентом — и жидкой — органической — затруднен тем, что силы поверхностного сцепления между этими фазами велики, экстрагент обволаки- [c.199]


Смотреть страницы где упоминается термин Экстракция в технологии органических веществ: [c.69]    [c.100]    [c.16]    [c.72]   
Смотреть главы в:

Жидкостная экстракция -> Экстракция в технологии органических веществ




ПОИСК





Смотрите так же термины и статьи:

Применение экстракции в химической технологии органических веществ

Технология органических веществ



© 2025 chem21.info Реклама на сайте