Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность и степень окисления. элементов

    В большинстве случаев степень окисления равна валентности и отличается от нее только знаком. Но встречаются соединения, в которых степень окисления элемента не равна его валентности. Как уже указывалось, в простых веществах степень окисления элемента всегда равна нулю независимо от его валентности. В табл. 8 сопоставлены валентности и степени окисления некоторых элементов- в различных соединениях. [c.89]


    Глава 3. Валентность, степень окисления, заряд иона. Области применимости этих понятий. Предсказание возможных значений валентности и степени окисления химического элемента на основе его положения в Периодической системе [c.71]

    Изменение химических свойств элементов в группах имеет ряд интересных закономерностей. Номер группы соответствует наибольшей степени окисления элементов (см. 5.4). Д. И. Менделеев характеризовал значение высшей валентности элементов на основании их соединений с кислородом. Значение валентности по кислороду по группам возрастает от 1 до 8. Значение валентности по водороду имеет максимум для IV группы. В сумме обе валентности, начиная с IV группы, дают 8 (например, СОа и СН4, UO, и НС1). Номер группы, таким образом, указывает число электронов атомов элементов, которые могут участвовать в образовании химических связей, определяет диапазон валентных возможностей атомов элементов. В этом физический смысл номера группы в периодической системе. [c.90]

    Некоторые свойства, такие, как ионизационный потенциал, сродство к электрону, электроотрицательность, валентность (степень окисления), а также атомный и ионный радиусы, позволяют предсказать и объяснить химические свойства элементов, также закономерно изменяющиеся с ростом порядкового номера и периодически повторяющиеся у элементов одной группы. [c.107]

    Элементы в соединениях металлы водород кислород Степень окисления = Валентность Степень окисления = + 1 Степень окисления = -2 +2 -2 Си О +1 -2 н,о [c.59]

    Названия соединений, содержащих металл и неметалл, состоят из названия неметалла (элемента с большей электроотрицательностью), образованного добавлением к латинской основе окончания -ид названия металла (элемента с меньшей электроотрицательностью) валентности (степени окисления) металла, которая указывается римской цифрой в круглых скобках. [c.138]

    Охарактеризуйте валентность и степень окисления элементов подгруппы цинка [c.170]

    Первоначально к комплексным (координационным) соединениям относили только те соединения, в которых была превышена стехиометрическая валентность (степень окисления элемента) центрального атома. По этим представлениям комплекс состоит из центрального атома А, окруженного непосредственно связанными с ним отдельными атомами (или ионами) В и электронейтральными группами (молекулами) С остальные (не связанные непосредственно с А) ионы образуют внешнюю сферу комплексного соединения. Атомы (или ионы) В и группы С называются лигандами, а их суммарное число — координационным числом центрального атома А. Координационное число всегда больше числа, определяющего стехиометрическую валентность (степень окисления элемента) атома А. [c.33]


    Восстановление — химическая реакция, противоположная окислению. При В. атом или ионы присоединяют электроны. При этом происходит понижение валентности (степени окисления) элемента. Примеры В. оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ В. органических кислот в альдегиды и спирты гидрогенизация жиров и др. [c.34]

    Мыслимы и реакции диспропорционирования, в которых при изменении степени окисления элемента его валентность остается постоянной. К ним относятся многие процессы с участием органических соединений, например реакции [c.92]

    Применение понятия степень окисления элемента , как и численное выражение валентности, возможно лишь в известных пределах и нельзя придавать этому понятию однозначный физический смысл. [c.85]

    Известны и другие соединения нулевой степени окисления -элементов, например Сг(РРз)в, Мо(РРз)в, Сг(РРз)з(СО)з, Ре(М0)4, Ре(N0),(С0) К1[Р(С,Н5)з14. В этих соединениях молекулы-лиганды выступают в качестве а-доноров и я-акцепторов электронных пар. Координационные числа -элементов здесь также обусловливаются числом свободных орбиталей, возникающих при спаривании валентных электронов комплексообразователя. [c.463]

    К настоящему времени определены атомные массы всех открытых элементов, дана классификация различных веществ. Развитие атомно-молекулярного учения привело к возникновению и широкому использованию в химии других важных понятий. К ним относятся валентность, степень окисления, координационное число, электроотрицательность и др. Современное понимание их в значительной мере основывается на результатах развития теории строения атомов и молекул. Поэтому эти и другие понятия атомно-молекулярного учения будут даны после изложения соответствующих тем. [c.27]

    В ряде других случаев получаются соединения определенной валентности, однако они очень легко окисляются кислородом воздуха. Чтобы избежать этого, колбу, в которую собирают раствор после восстановления, наполняют углекислым газом. Иногда раствор, вытекающий из редуктора, собирают в коническую колбу, содержащую 10—15 мл 20%-ного раствора железных квасцов. Восстановленный до низшей степени окисления элемент тотчас реагирует с ионами трехвалентного л<елеза, например  [c.370]

    Составьте энергетические диаграммы распределения электронов атомов 1) углерода, 2) азота, 3) кислорода, 4) серы, 5) хлора, 6) брома, 7) йода. Предскажите возможные валентные состояния (или степени окисления) элементов. Выделите те состояния, при которых отвечающие им соединения могут играть роли восстановителя, окислителя, а также окислителя и восстацовителя одновременно. [c.266]

    Записать рядом знаки химических элементов (или формулы ионов), образующих соединение. Проставить над ними известные (из правил или из условия) значения валентности (степени окисления, заряда иона). [c.82]

    Элементы углерод С, кремний Si, германий Ge, олово Sn и свинец РЬ составляют IVA группу Периодической системы Д. И, Менделеева. Общая электронная формула валентного уровня атомов этих элементов ns np . Преобладающие степени окисления элементов в соединениях ( + 11) и ( + 1V), По электроотрицательности элементы С и Si относят к неметаллам. Ge, Sn и РЬ — к амфотерным элементам с возрастающим металлическим характером по мере увеличения порядкового номера. Поэтому в соединениях элементов со степенью окисления (IV) связи ковалентны для свинца (И) и в меньшей степени для олова (И) известны ионные кристаллы. В целом устойчивость степени окисления ( + IV) уменьшается, а устойчивость степени окисления ( + 11) увеличивается от С к РЬ. Соединения свинца (IV) —сильные окислители, соединения остальных элементов в степени окисления (И) — сильные восстановители. [c.202]

    Кластеры типичны для соединений -элементов, металлы которых имеют высокие энергии атомизации. В кластерных соединениях с формально низкими степенями окисления -элементов валентные электроны их атомов в значительной степени используются на связи М—М, а оставшиеся образуют связи с атомами неметаллов (партнерами). В итоге все валентные электроны атомов -элементов в кластерах принимают участие в образовании связей независимо от степени окисления. [c.109]

    Соединение Элемент Валентность Степень окисления [c.88]

    Понятие степени окисления, таким образом, пришло на смену понятию электровалентности. В связи с этим представляется нецелесообразным пользоваться и понятием ковалентности. Для характеристики элементов лучше применять понятие валентности, определяя ее чис-лом электронов, используемых данным атомом для образования электронных пар, независимо от того, притягиваются они к данному атому или, наоборот, оттягиваются от него. Тогда валентность будет выражаться числом без знака. В отличие от валентности степень окисления определяется числом электронов, оттянутых от данного атома, — положительная, или притянутых к нему, — отрицательная. Во многих случаях арифметические значения валентности и степени окисления [c.16]


    Мы уже установили ранее (см. 2—4, гл. III), что понятие положительной и отрицательной валентности — так называемой степени окисления — чаще всего носит условный, формальный характер. Тем не менее использование этого понятия оказывается весьма полезным при рассмотрении окислительно-восстановительных процессов. Дело в том, что в молекуле любого вещества сумма степеней окисления элементов, составляющих молекулу, равна нулю, поэтому, зная степени окисления некоторых элементов, можно учесть изменения в валентном состоянии и других элементов в молекула. [c.188]

    Упражнения, предложенные в данной главе, рекомендуется выполнять в процессе изучения периодического закона, строения атомов, теории химической связи, валентности и степени окисления элементов. [c.43]

    При образовании соединений с ковалентной связью часто нужно ставить также знак валентности. Хотя определение знака валентности в таких случаях сугубо условное, оно очень удобно при подборе коэффициентов в уравнениях окислительно-восстановительных реакций. В соединениях с ковалентной связью определяют не валентность, а степень окисления, которая является более общим понятием, чем электровалентность. Так, в молекулах HjO, Oj, N. ионов нет, поэтому здесь можно говорить не об электровалентности, а о степени окисления элементов. [c.18]

    Для большинства неорганических кристаллических веществ характерно полимерное строение Молекулярные решетки встречаются чрезвычайно редко, что было установлено уже в первых рентгеноструктурных исследованиях. Тогда же было показано, что координационное число элементов кристаллической решетки, как правило, больше числа его обычной валентности (степени окисления), что позволяет рассматривать неорганические полимерные соединения как комплексные. Комплексные составляющие таких неорганических полимеров можно условно выделить на основании анализа кристаллической структуры. [c.671]

    Какова валентность и степень окисления элементов в молекулах свободных галогенов  [c.170]

    Высшая положительная степень окисления проявляется, когда в образовании связи принимают участие все валентные электроны атома. Численно она равна номеру группы периодической системы и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления. Все остальные степени окисления элемента называют промежуточными. Например, у атома (элемента) серы высшая степень окисления равна +6, низшая <—2, промежуточная +4. [c.57]

    Номер группы связан с валентностью находящихся в ней элементов. Как правило, высшая положительная валентность (степень окисления) элементов равна номеру группы. Исключением являются фтор — он бывает только отрицательно одновалентным, бром — не бывает семивалентным медь, серебро, золото могут проявлять валентность +1, +2 и +3 из элементов VUI группы валентность +8 известна только для осмия и рутения (рутений открыт русским химиком К- К. Клаусом в 1844 г. и назван в честь России, латинское Ruthenia — Россия). [c.187]

    Качественный и количеспвенпый состав вещества изображают с помощью химической формулы, составляемой иа основании валентностей (степеней окисления) элементов, образующих данное вещество. Валентностью называют число, показывающее, со сколькими одновалентными атомами соединен (или замещает их) атом данного элемента. За единицу валентности принята валентность атома водорода, который считается одновалентным, Таким образом, валентность элемента в соединении с водородом определяется число , атомов водорода, присоединяемых одним атомом данного элемента. [c.26]

    Степень окисления элемента очень часто не совпадает с его валентностью, которая, как известно, определяется числом электронов, принимающих участие в перекрывании электронных облаков и образовании общего электронного облака связи. Так, в молекулах Н2 и H I каждый из атомов отдает по одному электрону на образование o6niero электронного облака связи. Степени же окислсния их различны. В молекуле Н2 максимальная плотность облака связи сосредоточена на равном расстоянии от ядер обоих атомов, поскольку оба они равноценны. Поэтому атомы сохраняют свой электронейтральный характер и степень окисления их равна нулю. В молекуле же H I максимальная плотьгость электронного облака р есколько смещена к хлору, поэтому степень окисления хлора равна — 1, а водорода + 1. [c.141]

    Как известно, таблица Менделеева подразделяется на семь горизонтальных периодов и восемь вертикальных групп. Первый период включает всего два элемента, второй и третий периоды — по восемь, четвертый и пятый — по восемнадцатй, шестой и седьмой — по тридцать два элемента. Первые три периода называются малыми, а четвертый и следующие — большими последние в таблице Менделеева подразделяются на ряды, малые же периоды совпадают с соответствующими рядами. В каждой группе элементы больших периодов подразделяются на две подгруппы — главную и побочную. Элементы малых — второго и третьего периодов в каждой группе относятся к главной подгруппе. Основанием для помещения элементов в ту или иную группу являлась максимально возможная валентность (вернее, степень окисления) элемента — последней соответствует номер группы исключение составляют кислород, фтор, неон и элементы побочной подгруппы VUI группы, валентность которых никогда не достигает соответственно [c.23]

    V группа, главная подгрупп а азот, фосфор, мышьяк, сурьма, висмут. Атомы этих элементов имеют на внешнем уровне по пять электронов из которых неспарены только три р-электрона. Такому состоянию соответствует степень окисления элементов —3, например в гидридах ЭНд. При возбуждении атомов происходит разъединение -электронов и один из них переходит на -подуровень (за исключением атомов азота, не имеющих внешних -подуровней). Валентных электронов становится пять, они находятся в состоянии 5 -возбуждения, которому соответствует степень окисления элементов в соединениях +5. [c.232]

    Изобразите геометрическую конфигурацию молекулы пероксида водо[)од 1. Почему молекула Н2О2 полярна Составьте электронную формулу Н2О2, укажите степени окисления элементов и валентность атома кислорода. [c.99]

    Особенности строения электронных оболочек атомов элементов IV группы обусловливают способность их проявлять переменную валентность (степень окисления). Но если углерод и кремний образуют главным образом соединения, где они четырехвалентны, то для германия, олова и свинца в равной мере возможны и двух- и четырехвалентное состояния, причем устойчивость двухвалентного состояния повышается от германия к свинцу. Это объясняется тем, что у меньших по объему атомов углерода и кремния (и в какой-то мере германия) легко осуществляется 5р -гибридизация, вследствие чего образуется четыре равноценные ковалентные связи. С ростом радиуса атомов склонность орбиталей к гибридизации уменьшается, а удаление неспареиных электронов с р-орбиталей олова и свинца осуществляется легче, чем спаренных электронов с 5-орбиталей. [c.184]

    Элементы цинк 2п, кадмий Сс1 и ртуть Нд составляют ПБ группу Периодической системы Д. И. Менделеева. Валентный электронный уровень их атомов имеет формулу пз , поскольку (/г—I) /-подуровень полностью заполняется, приобретает повышенную устойчивость и валентным уже не является. Поэтому свойства цинка, кадмия и (в меньшей степени) ртути имеют сходство и со свойствами 5р-элементов, и тех /-элементов, у атомов которых (п—I) -подуровень заполнен лишь ча-стично. Характерная степень окисления элементов ПБ группы равна ( + 11), для ртутн характерна и степень окисления ( + )  [c.228]

    В двухэлементных веществах с молекулярным или ионным строением абсолютные значения зарядов ионов отвечают стехиометрической валентности атомов, например, для Na20 - Na и О", для P I3 - Р" и С1. Одновременно знак и значение зарядов ионов отвечают соответствующим (положительным или отрицательным) степеням окисления элементов, например  [c.15]

    Изобразите электронные формулы следующих молекул С12, 1л2, Рг, НР, Н О, РНз, СН4, Н2О2. Укажите полярные и неполярные связи. Определите валентность атомов и степень окисления элементов. [c.53]

    Элементы Б-групп (побочных подгрупп) Периодической системы ( / -элементы). Особенности электронного строения атомов, общая электронная конфигурация. Валентные электроны и степени окисления. Высшие степени окисления элементов ПБ-УПБ-групп, особенности у элементов 1Б- и У1ПБ-групп. [c.182]

    Вещества, в которых значения степеней окисления элементов совпадают с проявляемыми ими валентностями (NH3, НгО,-SO3, Ag I и т. п.), называют соединениями первого порядка (или простыми соединениями), а вещества, в которых элементы проявляют дополнительные валентности, рассматривают как соединения высшего порядка и называют комплексными. [c.106]

    Все оксиды переходных металлов при обычной температуре твердые вещества, кроме МП2О7 (жидкость). Состав оксидов в низших степенях окисления элемента, как правило, не подчиняется правилам обычной валентности. Это фазы переменного состава, например НОо.за - Т101,2 НЬО д - КЬОг.г Рео.вэО-Рео.эзО. Их электронейтральность поддерживается изменением [c.499]


Смотреть страницы где упоминается термин Валентность и степень окисления. элементов: [c.4]    [c.83]    [c.196]    [c.101]    [c.106]    [c.78]    [c.498]   
Смотреть главы в:

Справочник Химия изд.2 -> Валентность и степень окисления. элементов




ПОИСК





Смотрите так же термины и статьи:

Окисления степень

Окисленность элементов

Степень окисления элементов



© 2025 chem21.info Реклама на сайте