Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азота определение в сурьме

    Определение сурьмы в олове. Помещают 1 г стружек олова в платиновую чашку, растворяют при слабом нагревании в 10 мл концентрированной соляной кислоты и полученный раствор доводят дистиллиро-Х1б г- ванной водой до объема 15 мл. Переносят раствор в ион л). электролизер и удаляют кислород током азота 10 мин. Мост и промежуточный сосуд заполняют 1 М раствором соляной кислоты. Проводят электролиз перемешиваемого раствора в течение 15 мин при потенциале электрода —0,6 в. Выдерживают систему при потенциале —0,4 в до растворения олова, прекращают перемешивание и, не размыкая внешнюю цепь, переносят электрод в раствор, 1 М по соляной кислоте и по нитрату ртути (И). [c.52]


    Определение сурьмы в меди. Растворяют 0,5—1 г меди в 20 лл. азотной кислоты (1 1), кипятят до удаления окислов азота и разбавляют водой до 150—200 мл. Вводят [c.53]

    Определение сурьмы в бронзах и латунях . Растворяют 0,5 г сплава в 20 мл азотной кислоты (1 1) и кипятят 2—3 мин для удаления окислов азота. К раствору добавляют 10 мл соляной кислоты (1 1) и упаривают до состояния влажных солей. Упаривание с соляной кислотой повторяют 5 раз. Остаток растворяют в 1 н. соляной кислоте, 10- М по родамину С. Раствор переносят в электролизер, удаляют кислород током инертного газа. Одновременно во второй электролизер заливают 10 мл 1 н. соляной кислоты и удаляют кислоро.д также током инертного газа. [c.102]

    Определение сурьмы в ароматических соединениях, содержащих одновременно азот и хлор, может быть выполнено следующим путем  [c.381]

    Их содержится 1—2 % [226], и для различных месторождений содержание может существенно разниться. Существуют определенные зависимости между содержанием гетероатомов и металлов в смолисто-асфальтеновых веществах [226]. Установлена связь между содержанием серы и ванадия, ванадия и азота нейтрального характера. С содержанием серы коррелируется железо, сурьма, хром. [c.274]

    Пирамидальную конфигурацию имеют хиральные центры, образованные атомами трехвалентного азота, фосфора, мышьяка, сурьмы, серы. К этому типу оптически активных соединений принадлежат определенные производные трехвалентного азота, фосфины, арсины, стибины, сульфоксиды. [c.80]

    Нитхромазо применен для определения сульфатной серы в экстракционной фосфорной кислоте [49], в лимонной и винной кислотах [175], в котловой воде [51], сточных водах гальванических цехов, в электролитах меднения, хромирования [22] и матового никелирования [237], в теллуристых растворах [483] для определения серы в трехсернистой сурьме [481 ], в полупроводниковых пленках на основе сульфида и селенида кадмия [485], в сульфидах урана [166], в горных породах и минералах [1467], в углеродистых материалах [267] для определения серной кислоты в газах контактных сернокислотных цехов [53] и в башенных газах в присутствии окислов азота [199] для оценки содержания серы в удобрениях [47], овощах [258], биологических материалах 378], расти,-тельных объектах [257] для определения серы в фосфор- и мышьяксодержащих органических соединениях [50, 304]. [c.93]


    При электролитическом методе определения меди требуется получение прозрачного раствора, свободного от мышьяка, сурьмы, олова, молибдена, золота, платиновых металлов, серебра, ртути, висмута, селена (IV) и теллура (IV), загрязняющих осадок выделяющейся меди. Кроме того, должны отсутствовать роданистоводородная кислота, присутствие кото-рЬй делает осадок меди губчатым, и соляная кислота, действующая аналогично и, кроме того, вызывающая растворение платины на аноде и переход ее на катод. Затем должны отсутствовать окислители, как, нанример, окислы азота, большие количества нитрата железа (III) или азотной кислоты, которые вначале препятствуют осаждению меди, а потом служат причиной получения высоких результатов, если в конце концов удалось добиться полноты осаждения меди Электролиз может быть проведен в азотнокислом или сернокислом растворе, и обычно его проводят в смеси обеих кислот. Если применяется одна азотная кислота, имеется опасность замедленного или неполного осаждения. Этого можно избежать, прибавляя 1 каплю 0,1 н. раствора соляной кислоты перед началом электролиза Катод и анод желательно иметь в виде открытых сетчатых платиновых цилиндров с матированной новерхностью, полученной при помощи пескоструйного аппарата (стр. 55). [c.286]

    В результате исчерпывающего хлорирования каменного угля, суспендированного в пятихлористо сурьме в течение 6 дней при 200°, было найдено, что содержание азота в нелетучем хлорированном остатке было на 50% выше, чем в исходном угле [106], Это увеличение содержания азота не могло быть отнесено на счет употребленных реактивов. Было предположено, что хлорирование изменило природу азотных связей в угле таким образом, что азот, который до хлорирования не мог быть определен методом Кьельдаля, после этого легко превращался в аммиак. [c.137]

    При иодометрическом определении необходимо строго регулировать pH раствора. При низкой концентрации ионов водорода получаются пониженные результаты определения меди, так как часть иода расходуется на окисление меди (1). При pH >5 мышьяк (V) выделяет иод из иодида калия и получаются повышенные результаты. В.этих условиях реакция восстановления меди иодидом калия идет очень медленно, конечная точка титрования становится нерезкой и оттитрованный бесцветный раствор через некоторое время синеет. Мышьяк (III) и сурьма (III) мешают, так как они титруются иодом. Обычно эти элементы находятся в пятивалентном состоянии, так как при разложении применяют азотную кислоту. Окисляющие вещества (окислы азота) после разложения пробы должны быть удалены из раствора. [c.241]

    Пример мокрого озоления был уже рассмотрен в разделе, посвященном определению азота в органических соединениях по методу Кьельдаля (гл. И), где окислителем служит концентрированная серная кислота. Этот реагент часто применяют также для разложения органических соединений при определении в них металлических компонентов. Для увеличения скорости окисления к раствору можно периодически добавлять азотную кислоту [4]. При таком способе разложения ряд элементов улетучивается, по крайней мере частично, особенно если в пробе содержится хлор к таким элементам относятся мыщьяк, бор, германий, ртуть, сурьма, селен, олово, галогены, сера и фосфор. [c.231]

    Существует много хороших методов прямого отделения мышьяка. Метод, имеющий наибольшую применимость, состоит в отгонке хлорида мышьяка (III) из солянокислого раствора. Для восстановления пятивалентного мышьяка до трехвалентного применяют такие восстановители, как сульфат гидразина, хлорид меди (I) или сульфат железа (II). Присутствие бромидов способствует восстановлению. Азотная кислота и другие сильные окислители должны отсутствовать. Присутствие серной кислоты не мешает. Германий при отгонке сопутствует мышьяку сурьма может частично перегоняться, если температура отгонки поднимается выше 107°. Ни один из этих элементов не мешает последующему колориметрическому определению мышьяка. Если фосфатов много, то отгонку повторяют при тех же условиях, как и в первый раз, чтобы устранить ошибку, которая может возникнуть при механическом увлечении фосфора в первый дестиллат. Пропускание углекислоты или азота через раствор во время дестилляции облегчает улетучивание мышьяка. Дестиллат можно собрать в холодную воду. Указания для выполнения отгонки с применением сульфата гидразина в качестве восстановителя даны на стр. 341. [c.336]

    Определение сурьмы, свинца и олова. Разработан метод определения сурьмы, свинца и олова в смазочных маслах с использованием гидридного генератора и непламенного атомизатора без предварительной минерализации пробы [334]. Гидридный генератор (рис. 26) представляет собой плоскодонную пробирку 1 с анализируемым образцом. В сферическую емкость 2 помещают восстановитель — 1 мл 1%-ного водного раствора тетрагидробората натрия. По патрубку 3 образовавшиеся гидриды иереносятся потоком азота в графитовый атомизатор. Для прямого анализа масла аккуратно наносят на дно пробирки микрошприцем 5—50 мкл образца и добавляют 0,2 мл 70%-ной азотной кислоты. Останавливают на 10 с поток азота и быстрым поворотом емкости 2 на 180° сливают восстановитель в пробирку с образцом. Затем пускают азот и записывают сигнал. После этого пробирку ополаскивают тетрагидрофураном и начинают новое измерение. Весь цикл длится 3 мин. Условия анализа и достигнутые результаты приведены в табл. 62. [c.239]


    Метод основан на окислении серы до сульфатной при растворении металла в смеси соляной кислоты и брома, удалении сурьмы в виде бромида, восстановлении 504 до смесью нодистоводородной кислоты и гипофосфита натрия с последующей отгонкой сероводорода в токе азота. Определение заканчивается фотометрическим методом по реакции образования сульфида свинца. [c.239]

    Дальнейшие операции зависят от конкретного состава образца, цели разделения (анализ или регенерация) и используемых методов определения элементов. Например, при анализе сплавов InSb, 3InAs-InSb с последующим йодометрическим определением сурьмы необходимо устранять мешающее действие избытка окислителей (окислов азота, азотной кислоты), что достигается осторожным упариванием раствора перед экстракцией до малого объема при температуре не выше 105—110° С [20]. Потери мышьяка при этой операции составляют примерно 18% (его содержание рассчитывается по разности), а потери сурьмы обычно не превышают 2%. [c.172]

    Поданным Вебстера и Файрхола, определению сурьмы мешают золото, таллий и вольфрам, так как образуют с реагентом окрашенные соединения (вольфрам дает осадок). Известно, что железо(И1) и галлий также образуют экстрагируемые хлорантимонаты, окрашенные в красный цвет. В присутствии ртути(И) иод- и бром-ионы образуют осадки. Углеводороды (ацетилен) и гидриды кремния, азота, фосфора, мышьяка, серы, селена и теллура не мешают определению сурьмы, если они поглощаются раствором хлорида р ути(П). [c.233]

    Взаимодействие с элементарными веществами. Со всеми галогенами сурьма и висмут энергично взаимодействуют с образованием тригалидов, а при избытке фтора или хлора сурьма образует соответствующие пентагалиды. На воздухе при обычных температурах сурьма и висмут вполне устойчивы. При температуре порядка 600° С они сгорают с образованием соответствующих оксидов типа МегОз. При сплавлении с серой, селеном и теллуром образуются соответствующие соединения, в которых сурьма и висмут трехвалентны. С азотом сурьма и висмут не взаимодействуют. С большинством металлов сурьма и висмут дают сплавы, причем определенные соединения образуются преимущественно с активными металлами (а сурьма и с такими металлами, как никель, серебро, олово). [c.209]

    Плотность— 1,854 при 0° и 1,811 при 32°. При обычных температурах она не растворяет в себе углерод, водород, азот, кислород, кремний, теллур, металлы и не реагирует с ними. Исклю чение составляют щелочные металлы и сурьм а. Реакции со щелочными металлами сопровождаются взрывом при определенных температурах, изменяющихся от 30 (для цезия) до 180° (для натрия). Для лития такая температура не определена. [c.106]

    Мышьяк существует в четырех аллотропных формах металлической, серой, желтой коричневой. При нагревании его на воздухе образуется трехокись мышьяка AsiO.i, Ппи горении мышьяка выделяется сильный чесночный запах, который не замечается, когда подвергают сублимации чистую трехокись мышьяка. Пары его ядовиты. По своим физическим свойствам. мышьяк похож на металл однако характер взаимодействия его с кис,тородсодержащими кислотами заставляет- отнести его к неметаллам. Подобно фосфору устойчивая. молекула мышьяка содержит четыре атома. В группе периодической системы элементов, в которой находится мышьяк, первые члены ее, азот и фосфор, не имеют основных свойств. Находящиеся ниже. мышьяка сурьма и висмут обладают определенным металли-ческ И г, а их трехвалентные окислы — определенно основным характером. Мышьяк занимает промежуточное положение. [c.163]

    Элементный анализ используют для количественного определения органических и элементорганических соединений, содержащих азот, галогены, серу, а также мышьяк, висмут, ртуть, сурьму н другие элементы. Элементный анализ может быть также применен для качественного подтверждения нгшичия этих элементов в составе исследуемого соединения или для установления или подтверждения брутто-формулы вещества. [c.126]

    Силикокальций. Метод определения содержания фосфора Силикокальций. Метод определения кремния Силикокальций. Метод определения содержания железа Силикокальций. Метод определения кальция Силикокальций. Методы оиределения алюминия Феррониобий. Метод определения фосфора Феррониобий. Метод определения кремния Феррониобий. Метод определения суммы ниобия и тантала Феррониобий. Метод определения тантала Ферроьшобий. Метод определения алюминия Феррониобий. Метод определения титана Ферроьшобий. Метод определения содержания азота Феррониобий. Метод определения содержания кобальта Феррониобий. Метод определения содержания висмута Феррониобий. Метод определения содержания олова Феррониобий. Метод определения содержания мышьяка Феррониобий. Метод определения содержания сурьмы Феррониобий. Метод определения содержания цинка Феррониобий. Метод определения содержания свинца Ферросиликомарганец. Методы определения марганца [c.567]

    Растворяют 1 г свинца в 10 мл 40 /о-ного раствора винной кислоты и 10 мл HNO3 (1 1). После отгона оксидов азота кипячением раствор переводят в мерную колбу вместимостью 100 мл и проводят определение так же, как в сурьме. [c.91]

    Научные работы относятся к различным областям физики и химии. В 1811 заложил основы молекулярной теории, обобщил накопленный к тому времени экспериментальный материал о составе веществ и привел в единую систему противоречащие друг другу опытные данные Ж. Л. Гей-Люсса-ка и основные положения атомистики Дж. Дальтона, отвергнув часть последних. Открыл (1811) закон, согласно которому в одинаковых объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул (закон Авогадро). Именем Авогадро названа универсальная постоянная — число молекул в 1 моле идеального газа. Создал (1811) метод определения молекулярных масс, посредством которого по экспериментальным данным других исследователей первым правильно вычислил (1811—1820) атомные массы кислорода, углерода, азота, хлора и ряда других элементов. Установил количественный атомный состав молекул многих веществ (в частности, воды, водорода, кислорода, азота, аммиака, оксидов азота, хлора, фосфора, мышьяка, сурьмы), для которых он ранее был определен неправильно. [c.10]

    Иодомет ический метод определения меди основан на том, что прк обработке подкисленных растворов солей меди (II) иодидом калия образуется иодид меди (I) и выделяется иод. По точности этот метод очень близок к электролитическому методу и, обладает тем преимуществом, что при работе мало отражается присутствие Посторонних веществ это преимущество имеет особенно бЬльшое значение при анализе материалоа сложного состава, например медных руд. Иодометрическому определению, меди мешают окислы азота, соединения мышьяка (III) и сурьмы (III), реагирующие с иодом соединения железа fill), молибдена (VI) и селена (VI), выделяющие иод из иодида калия минеральные кислоты в присутствии мышьяка (V) и сурьмы (V), а если последних нет, то помехи возникают, когда концентрация кислот превышает 3% (по объему), и, наконец, избыточные "количества ацетата аммония, если из кислот [c.287]

    Между тем Франкленд, исследуя органические соединения, содержащие азот, фосфор, мышьяк или сурьму, нашел, что в них число атомов, приходящихся на один атом любого из этих элементов, равно трем или пяти. Поэтому он пришел к выводу, что атомы обладают некоей соединительной силой , которая и определяет количественный состав соединений. В соответствии с этим каждый атом имеет определенную емкость насыщения , или атомность [35]. Впоследствии К. Г. Вихельхаус заменил эти понятия термином валентность .  [c.61]

    Люминесценция неорганических веществ в растворах подвержена сильному тушению, вследствие чего большинство неорганических веществ, обладающих люминесценцией в твердом агрегатном состоянии, при растворении теряют эту способность. По этой причине люминесценция растворов неорганических веществ в аналитических целях практически не использовалась, и за весь период развития люминесцентного метода анализа можно найти лишь несколько примеров определения элементов по люминесценции их неорганических соединений в растворах редкоземельные элементы, уран, таллий, олово [7, 8]. В результате охлаждения растворов вязкость их сильно увеличивается, тепловое движение ионов и вероятность безызлучательной дезактивации резко уменьшается. Особенно благоприятные условия для люминесценции создаются при охлаждении до температуры жидкого азота. В этих условиях люминесцирует большинство ртутеподобных ионов. Люминесценция этих растворов интенсивна и пригодна для аналитического использования. Причем оказалось, что определение некоторых элементов (свинец, висмут) по люминесценции их галогенидов в замороженных растворах является единственным люминесцентным методом, которым можно чувствительно и специфично определять микрограммо-вые количества этих элементов. Для других элементов, например сурьмы, определение по свечению галогенидов в замороженных растворах намного чувствительнее известных методов определения в растворах и более надежно и специфично, чем полуколичественное определение по свечению кристаллофосфоров. Сравнение разработанных нами методов определения свинца, висмута и сурьмы с описанными люминесцентными методами определения тех же элементов приведено в табл. 8. [c.217]

    Для определения примесей в алкильных соединениях индия, галлия, сурьмы, олова, кадмия и цинка их переводили в окиси, которые и подвергали спектральному анализу. Алкильные соединения цинка энергично взаимодействуют с кислородом воздуха и водой. Гидролиз сопровождается появлением пламени даже при сильном охлаждении и в атмосфере азота, что неудобно при проведении рутинных анализов. Поэтому диэтилцинк разлагали в две стадии сначала спиртом с переводом алкильного соединения в ал-коксид, который в свою очередь разлагали затем азотной кислотой. Обе реакции протекают достаточно спокойно [12]. Остальные из [c.244]

    Газовую хроматографию использовали для разделения соединений азота, фосфора и мышьяка [63]. Изомеры диметилфенилзмина, диметилфенилфосфина и диметилфениларсина разделяли при 90 или 180 °С на колонке длиной 7,5 м, диаметром 3 мм, содержавшей в качестве неподвижной фазы карбовакс с добавкой 2-нитротерефта-левой кислоты. Для определения мышьяка, сурьмы и висмута предложен метод, основанный на превращении их в трифенилпроизврд-ные (см. гл. IV). [c.191]


Смотреть страницы где упоминается термин Азота определение в сурьме: [c.365]    [c.367]    [c.189]    [c.563]    [c.124]    [c.84]    [c.137]    [c.605]    [c.669]    [c.364]    [c.166]    [c.460]    [c.195]    [c.160]    [c.411]    [c.133]    [c.121]    [c.362]   
Аналитическая химия сурьмы (1978) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота



© 2025 chem21.info Реклама на сайте