Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлора определение в сурьме

    НЕФЕЛОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ХЛОРА В СУРЬМЕ  [c.240]

    Сернистый мышьяк, выпавший при вышеприведенном определении сурьмы, после промывания водой до полного удаления хлора, L о w растворяет в воде, содержащей сернистый аммоний, выпаривает с 2—3 г [c.385]

    Трудно согласиться с авторами. Мышьяк мешает определению сурьмы перманганатометрическим методом в такой же мере, как и определению броматометрическим методом, но титрование броматом дает очень резкую конечную точку титрования, и при нем не наблюдается переход за эту точку, сопровождающийся выделением хлора, как это иногда случается при титровании перманганатом, если не была добавлена соль марганца. Прим. ред.  [c.299]


    Определение сурьмы в ароматических соединениях, содержащих одновременно азот и хлор, может быть выполнено следующим путем  [c.381]

    Так, в аналитической химии довольно точно производят определение малых количеств ртути, мышьяка, фосфора, сурьмы, хлора, сульфатов и других веществ. Затрата времени на эти определения значительно меньше, чем при весовом анализе. [c.349]

    Большой эффективностью и реакционной способностью обладает сухой хлор, свободный от хлористого водорода. При хлорировании даже при низкой температуре образуются летучие хлориды различных элементов [93J. Легколетучие хлориды серы, мышьяка, сурьмы и ртути отгоняют и улавливают разбавленной H l (1 1). Железо, висмут и цинк сублимируются частично, В некоторых случаях ртуть при определении в рудных материалах отгоняют в виде иодида. [c.139]

    Ход анализа. Навеску 2—5 г материала, содержащего теллур, сплавляют с 5-кратным количеством перекиси натрия в никелевом тигле. По охлаждении выщелачивают водой, добавляют соляную кислоту и кипятят для удаления выделившегося хлора. Затем восстанавливают теллур (присутствующий в растворе в виде шестивалентного) до элементарного гипофосфитом кальция. При этом в осадок выпадают вместе с теллуром селен, золото и мышьяк. Осадок отфильтровывают, промывают горячей разбавленной соляной кислотой, переносят в стакан и кипятят с концентрированной азотной кислотой до полного растворения всех металлов (кроме золота) добавляют 20 мл 18 н. серной кислоты, выпаривают до дыма,. охлаждают, разбавляют водой, добавляют отмеренный избыток раствора бихромата калия (I мг хрома в I м/1), дают постоять 30 мин и титруют избыток бихромата солью Мора при -1-1,15 в (Нас. КЭ) с платиновым электродом. Определению теллура не мешают селен, медь, свинец, серебро, висмут, сурьма, мышьяк и олово. [c.314]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Метод основан на нефелометрическом определении хлора по реакции образования хлорида серебра. Определение проводят без отделения сурьмы, которую удерживают в растворе в виде фторидного комплекса. Для оценки степени помутнения раствора используется прибор, основанный на эффекте Тиндаля. [c.240]


    В лабораторной практике важнее прямое галогенирование ароматических углеводородов как в ядре, так и в боковой цепи. Здесь также найдены закономерности, о которых будет сказано ниже (стр. 89). Хлор и бром вводятся в общем без затруднений в данном случае при содействии переносчиков. Наоборот, иод действует замещающе только при вполне определенных условиях, когда образующийся при реакции иодистый водород удаляется окислением или связывается каким-либо иным путем. Элементарный фтор на органические вещества обычно действует разрушающе, так что фторпроизводные, за малыми исключениями, могут получаться только обходным путем. Кроме самих галогенов, иногда применяются соединения, содержащие галоген, как, например,пятихлористый фосфор, пятихлористая сурьма, хлористый сульфурил. [c.84]

    Аппаратура для непрерывного определения углерода измерением теплопроводности описана в статье [164]. В пробе проводят осаждение раствором Ва(ОН)з, фильтруют, смешивают с 10 объемами ОД М раствора СгОз в 95%-ной серной кислоте и нагревают в течение 2,5 мин при 250 °С. Выделившуюся СОг отгоняют с током кислорода (10 мл/мин). Образовавшийся в незначительном количестве газообразный хлор поглощают металлической сурьмой, водяные пары поглощают высушивающим веществом. В заключение смесь СОг 4- Ог пропускают в измерительную камеру ячейки Гоу — Мака, СОг поглощают аскаритом, а остаточный газ-носитель пропускают в камеру сравнения. Полную шкалу прибора можно растянуть от 50 до 1000 мг/л. [c.54]

    ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ЧИСЛА АТОМОВ ХЛОРА К ЧИСЛУ АТОМОВ СУРЬМЫ В ЭКСТРАГИРУЕМОМ СОЕДИНЕНИИ ПУТЕМ АНАЛИЗА ОРГАНИЧЕСКОЙ ФАЗЫ i [c.301]

    Богатые сурьмой, содержащие медь свинцовые руды можно легко перевести в растворимое состояние сплавлением с перекисью натриа в небольшом железном тигле. В железном тигле смешивают 2 г тонко измельченной руды с 5,0—10,0 г перекиси натрия, эту смесь покрывают слоем перекиси натрия, толщиной в 2—3 мм, для более быстрого сплавления добавляют кусок едкого натра, длиною ъ 2 см, н накрывают тигель крышкой из листового железа. Затем нагревают сперва маленьким пламенем до начала сплавления, а потом усиливают пламя, пока масса не будет спокойно плавиться. Покачиванием тигля хорошо обмывают его стенки и затем дают остыть. После полного охлаждения тигель кладут в накрытый стакан, емкостью в 400 мл, прибавляют 150 мл холодной воды и по окончании растворения вынимают тигель, тщательно споласкивают его вместе с крышкой водой и подкисляют раствор соляной кислотой. Прозрачный раствор декантируют в литровую эрленмейеровскую. колбу, а оставшиеся частицы железа растворяют в небольшом количестве горячей, концентрированной соляной кислоты. Растворы соединяют, образующиеся при подкиглении соединения хлора удаляют кипячением, раствор охлаждают, делают слабо аммиачным и затем подкисляют 30 мл концентрированной соляной кислоты. В этот кислый раствор пропускают сероводород до насыщения и затем разбавляют его насыщенной сероводородной водой до одного литра. Осадку дают осесть в теплом месте в течение нескольких часов и затем отфильтровывают его. Осадок отмывают слабо подкисленной сероводородной водой до удаления железа, смывают обратно в колбу и 1-—2 раза выщелачивают его раствором сернистого натрия. Нагретый до кипения раствор сернистого натрия пропускают через тот же фильтр и промывают осадок водой,, содержащей немного сернистого натрия. После разрушения полисульфидов фильтрат можно использовать для электролитического определения сурьмы (см. т. II, ч. 2, вьш. 1, стр. 98). Осадок вместе с фильтром кладут обратно в колбу для осаждения и растворяют в смеси азотной и серной кислот. Раствор выпаривают до паров серной кислоты, извлекают водой кипятят и охлаждают. Сернокислый свинец отфильтровывают, промывают и взвещивают, как таковой. Фильтрат можно использовать для электролитического определения меди либо из сернокислого раствора, либо после пересыщения аммиаком-—из азотнокислого раствора. Если руда содержит много кремнекислоты, то сернокислый свинец (лучше всего после прокаливания и взвешивания) необходимо проверить на чистоту, потому что> [c.303]

    Органический адденд — катион. Органический реагент —катион принадлежит к классу К" или КН Реагирующий металл должен быть в виде аниона чаще комплексного аниона. Образующиеся вещества являются солями или солеподобными (с ионной парой) соединениями, обычно они слабо растворимы в воде. Растворенные в органических растворителях, они могут быть использованы для колориметрических измерений. Примером реагента такого типа является родамин Б. Он реагирует с рядом хлор-анионов и вольфраматом (стр. 180) и особенно удобен для определения сурьмы, галлия и золота, с которыми образует соединения (КН)5ЬС1с (КН)0аС14 и (НН)АиС14. Реакции этого типа могут протекать лишь в растворах сравнительно высокой кислотности, что необходимо для успешного проведения анализа. [c.125]


    Различные органические основания в присутствии иодида образуют с сурьмой(1П) слаборастворимые окрашенные иодантимониты общей формулы ВНЗЬЦ. Сурьма(У) восстанавливается иодидом до трехвалентной и реагирует точно так же. Кларк разработал метод определения сурьмы, основанный на образовании окрашенных в желтый цвет пиридин-иодидных комплексов сурьмы, удерживаемых в виде коллоидальной суспензии гуммиарабиком. Раствор подкисляют серной кислотой. Ион хлора или уменьшает интенсивность окраски, или полностью уничтожает окраску. Максимальная интенсивность окраски достигается в растворе 6—8 н. по серной кислоте. Концентрация иодида калия должна соответствовать 1 %-ному содержанию его в конечном растворе. Слишком большое количество пиридина также ослабляет окраску. Сульфаты щелочных металлов не оказывают заметного влияния. Для предупреждения окисления иодида воздухом до свободного иода в раствор добавляют небольшое количество сернистой [c.237]

    На этом свойстве основано [83] объемное определение степени разветвленности парафиновых углеводородов. При этом методе треххлористую сурьму, обр азова вшую ся и результате иэбирагельного хлор И рова-НИ5Г третичных атомов водорода, титруют броматом калия в присутствии бром-иона и метилоранжа. [c.184]

    Платина. Вследствие очень малой химической активности и высокой температуры плавления (1770°С) платина является ценнейшим материалом для изготовления различных химических приборов и сосудов (тиглей, чашек, электродов для электрогра-виметрических определений и т. д.). Однако, несмотря на большую устойчивость платины, хлор, бром, царская водка (смесь концентрированных HNO3 и НС1), едкие щелочи ее разрушают. Платина об )азует сплавы со свинцом, сурьмой, мышьяком, оловом, серебром, висмутом, золотом и др. Соединения указанных элементов в платиновой посуде нагревать нельзя. [c.45]

    Взаимодействие с элементарными веществами. Со всеми галогенами сурьма и висмут энергично взаимодействуют с образованием тригалидов, а при избытке фтора или хлора сурьма образует соответствующие пентагалиды. На воздухе при обычных температурах сурьма и висмут вполне устойчивы. При температуре порядка 600° С они сгорают с образованием соответствующих оксидов типа МегОз. При сплавлении с серой, селеном и теллуром образуются соответствующие соединения, в которых сурьма и висмут трехвалентны. С азотом сурьма и висмут не взаимодействуют. С большинством металлов сурьма и висмут дают сплавы, причем определенные соединения образуются преимущественно с активными металлами (а сурьма и с такими металлами, как никель, серебро, олово). [c.209]

    Разложение при помощи соляной кислоты. Природный сульфид свинца — галенит разлагают концентрированной НС1 на холоду. Пирит в соляной кислоте, свободной от хлора, растворяется незначительно. Соляной кислотой разлагаются пирротин, сфалерит, его богатая железом разность марматит и сульфид марганца (алабандин). При определении сульфатной серы в рудах, содержащих значительное количество пирротина, при разложении соляной кислотой происходит частичное окисление сульфидной серы до сульфатной. Полное окисление происходит при разложении сульфидов хлорноватокислым калием в среде достаточно концентрированной соляной кислоты при этом легко разлагаются сульфиды и сульфосоли мышьяка и сурьмы. Соляная кислота не разлагает молибденит M0S2 и киноварь HgS, однако в присутствии хрома-тов эти минералы растворяются полностью. Пириты и халькопирит полностью разлагаются, при этом сульфидная сера количественно окисляется до сульфатной [1325]. Сульфиды меди, мышьяка трудно или вовсе нерастворимы в соляной кислоте. [c.161]

    Одним из вариантов исиользования электрогенерированных галогенов в кулонометрическом анализе являются методы, основанные на превращении галогенов в соответствующие гипогало-гениты [385, 386]. В этом случае сначала генерируют хлор, бром или иод в ячейке для внешнего генерирования [387], а затем вводят полученный галоген в щелочной буферный раствор, содержащий определяемый компонент. Таким путем определяют аланин, аминомасляную кислоту, амины, аммиак, борогидриды щелочных металлов (ион 10 пригоден только для определения последних), а также роданиды, арсениты, сурьму и другие восстановители. [c.49]

    Анализ изотерм доля переноса тока i—состав позволяет также получить весьма определенные сведения о механизме переноса тока через раствор. В жидких системах практически встречаются только два основных механизма переноса тока миграционный (или ионный) и эстафетный Последний часто называют прототропным, что верно лишь в тех случаях, когда перенос тока осуществляется передачей протона по цепи Н-связей. Однако возможен эстафетный механизм переноса тока и с участием иных ионов. Так, например, в растворах хлоридов сурьмы перенос тока осуществляется по хлоротропно-му механизму, т. е. передачей по цепи связей 8Ь—С1 иона хлора. [c.404]

    Научные работы относятся к различным областям физики и химии. В 1811 заложил основы молекулярной теории, обобщил накопленный к тому времени экспериментальный материал о составе веществ и привел в единую систему противоречащие друг другу опытные данные Ж. Л. Гей-Люсса-ка и основные положения атомистики Дж. Дальтона, отвергнув часть последних. Открыл (1811) закон, согласно которому в одинаковых объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул (закон Авогадро). Именем Авогадро названа универсальная постоянная — число молекул в 1 моле идеального газа. Создал (1811) метод определения молекулярных масс, посредством которого по экспериментальным данным других исследователей первым правильно вычислил (1811—1820) атомные массы кислорода, углерода, азота, хлора и ряда других элементов. Установил количественный атомный состав молекул многих веществ (в частности, воды, водорода, кислорода, азота, аммиака, оксидов азота, хлора, фосфора, мышьяка, сурьмы), для которых он ранее был определен неправильно. [c.10]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, л<елеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]

    V предельных углеводородов пятихлористой сурьмой при охлаждении применяется для адличестветного определения разветвленных форм парафиновых углеводородов и замещенных циклопарафинов, т. е. предельных углеводородов, содержащих третичный атом углерода. Чтобы реакция с 8ЬС1в была вполне приемлема для количественного определения углеводородов с третичным углеродным атомом, необходимо устранить или свести к минимуму индуцирующий эффект третичного атома углерода на вторичный атом, приводящий к реакции замещения хлором атомов водорода в группах СНа. С этой целью Молдавский [103] видоизменил первоначальную методику хлорирова- [c.72]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Мешающие вещества. Одновременное присутствие сильных окиС" лителей (например, активного хлора) и нитрит-ионов исключено, так как они вступили бы в реакцию друг с другом. Реакции образования окрашенного соединения мешают ионы сурьмы, висмута, железа(III), свинца, ртути, но это предусмотрено в ходе определения ионы указанных металлов образуют осадки гидроксидов при нейтрализации раствора до pH = 7 и отделяются фильтрованием через мембранный фильтр. В присутствии ионов меди могут полу-, читься пониженные результаты вследствие каталитического ускорения этими ионами процесса разложения диазотированного соединения. [c.191]

    Двуокись титана для никель-титан о-вой лигатуры. Содержание двуокиси титана (ТЮз)— не менее 99,0%, трехокиси серы (503)—не более 0,05 %, хлора (С1)— не более 0,05%, трехокиси железа (РсзОд)—не более 0,15%, пятиокиси фосфора (Р2О5)—не более 0,06% и влаги—не более 0,5%. Остаток при мокром просеве на сите с 1600 отв см —не более 4%. Двуокись титана подвергают испытанию также на содержание других примесей методом спектрального анализа, результаты которого выражают определенным баллом. Содержание свинца должно быть не более 2 баллов, олова, сурьмы, мышьяка и цинка—не более 1 балла, меди—не более 3 баллов. [c.406]

    Наиболее подходящим метолом концентрирования германия является метод дистилляции германия в виде тетрахлорида из солянокислой среды в присутствии окислителя. При этом происходпт отделение германия почти от всех мешающих элементов, за исключением образующих летучие хлориды — олова, сурьмы и мышьяка. Известно, что мышьяк только в трехвалентной форме образует летучие хлориды и, если вести дистилляци ю германия в присутствии окислителя, главным образом хлора, мышьяк ие перейдет в дистиллят. Олово (IV) удаляют переводом его в нелетучее фосфорнокислое ссединение. Способ такого концентрирования германия позволяет ировссти его полярографическое определение на фоне 6N НС1 с применением гипофосфита кальция и 0,2%-ного раствора желатины для подавления л аксимума. [c.367]

    Во второй части книги описаны следующие методы, в которых применяется титрованный раствор тиосульфата определение мышьяка (V), сурьмы (V), гексацианоферратов (П1), хлора, брома, гипохлоритов, иодатов, броматов, кобальта в виде С02О3, меди, никеля в виде NI2O3, золота (П1), кислорода в присутствии гидроокиси марганца (П), озона, перекиси водорода, селена (VI), теллура (VI), селена (IV), таллия (III), сульфида цинка после добавления избыточного количества иода (обратным титрованием) и т. д. [c.571]

    Для приготовления исходных растворов Sb и Sb использовалась НС1 точно установленной концентрации и, соответственно, трехокись и пентахлорид сурьмы. Определение Sb в водной фазе проводилось броматометрически [2], а Sb — иодометрически [3] содержание сурьмы в органическом слое рассчитывалось по разности. Извлечение хлора из органической фазы достигалось двукратной реэкстракцией двойным объемом 0,2 Л/ лимонной кислоты с последующим определением I по Фольгарду [4]. Поправка на связывание С1 самим ТБФ вводилась интерполяцией кривых 1 [c.302]


Смотреть страницы где упоминается термин Хлора определение в сурьме: [c.167]    [c.404]    [c.69]    [c.75]    [c.230]    [c.367]    [c.72]    [c.93]    [c.143]    [c.82]    [c.162]    [c.322]    [c.79]   
Аналитическая химия сурьмы (1978) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Хлориты определение



© 2025 chem21.info Реклама на сайте