Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы жидкостной хроматографии

    Широкое распространение, в особенности за рубежом, при групповом анализе углеводородных смесей получил метод жидкостной хроматографии на силикагеле в присутствии флуоресцирующих (люминесцирующих) индикаторов — метод ФИА [153]. Сущность метода состоит в том что в колонку с силикагелем вводится анализируемая фракция с небольшим количеством флуоресцирующих индикаторов и красителя. В качестве вытесняющей жидкости служит этанол. Углеводороды при движении по силикагелю разделяются на зоны насыщенных алкенов и аренов. [c.129]


    Мы кратко остановились на некоторых методах жидкостной хроматографии. Но существует еще много других методов хроматографии — осадочная, газовая, газо-жидкостная и т. д. Все эти методы подробно рассматриваются в специальных разделах аналитической химии. [c.145]

    Распределительная хроматография является одним из наиболее эффективных методов жидкостной хроматографии. Методом жидкостной распределительной хроматографии можно раа-делять практически любые смеси, поскольку неограниченна число сочетаний пар разделяющих жидкостей. [c.333]

    Разделение методом газовой хроматографии, так же как и методом жидкостной хроматографии, основано на различии в коэффициентах распределения компонентов смеси между неподвижной и подвижной фазами. За ходом разделения наблюдают, непрерывно исследуя газ, выходящий из хроматографической колонки с помощью прибора-детектора. Последний непрерывно измеряет концентрацию компонентов у выхода из колонки и преобразует ее в электрический сигнал, регистрируемый потенциометром. На ленте самописца получается выходная кривая, которую называют хроматограммой. Основными типами детекторов являются детекторы, основанные на измерении теплопроводности, плотномеры, ионизационные и термохимические детекторы. Наиболее распространенным детектором, реагирующим на изменение теплопроводности, является катарометр, действие которого основано на разности теплопроводностей компонента смеси и газа-носителя. [c.353]

    Результаты исследования группового химического состава методом жидкостной хроматографии (табл.З) показывают,что реакционноспособными компонентами АПД являются в основном средние и тяжелые ароматические углеводороды, содержащие которых в аддуктах с увеличением концентрации МА снижается, а возрастает содержание вторых смол, асфальтенов и парафино-нафтеновых углеводородов. [c.151]

    В [19] исследован механизм удерживания СбО и С70 и высших фуллеренов при разделении методом жидкостной хроматографии с использованием модифицированных хроматографических неподвижных фаз с различными химически связанными алкильными группами. Показано важное значение поверхностной структуры связанных фаз. [c.39]

    Определение константы Генри и изотермы адсорбции прямым применением метода жидкостной хроматографии [c.262]

    Чистота и строение синтезированных соединений были подтверждены методами жидкостной хроматографии, ИК- и ПМР-спектроскопии. [c.51]


    Межмолекулярное взаимодействие компонентов раствора с адсорбентом и друг с другом на поверхности и в объеме раствора. Взаимное вытеснение молекул с поверхности адсорбента. Гиббсовская адсорбция, химический потенциал, коэффициент активности и константа Генри для адсорбции компонентов раствора. Изотермы гиббсовской адсорбции из бинарных и трехкомпонентных растворов. Адсорбция из растворов ограниченно растворимых компонентов, капиллярное расслаивание в порах адсорбентов. Влияние температуры. Определение константы Генри и изотермы адсорбции методом жидкостной хроматографии. [c.248]

    Применение для анализа растворов метода жидкостной хроматографии позволяет продвинуться в сторону малых концентраций равновесных растворов. Однако это лимитируется чувствительностью детекторов жидкостных хроматографов, которая может быть недостаточной, особенно если компонент плохо поглощает в ультрафиолетовой области спектра (ультрафиолетовые детекторы широко используются в жидкостной хроматографии). Непосредственное определение адсорбции данного компонента из его хроматограммы, полученной на колонне с изучаемым адсорбентом при элюировании изучаемым растворителем, рассмотрено в конце этой лекции. [c.251]

    Таким образом, следует добиваться согласия начальной части изотермы адсорбции, доступной для определения прямым методом жидкостной хроматографии, с соответствующим участком изотер- [c.264]

    Все это следует учитывать как при оптимизации селективности колонн с гидрофильными адсорбентами, так и особенно при определении термодинамических характеристик адсорбции из разбавленных растворов на таких адсорбентах методом жидкостной хроматографии (см. последний раздел лекции 14). [c.299]

    Разделение олигомеров и полимеров методом жидкостной хроматографии на твердых адсорбентах может быть основано на двух главных эффектах адсорбционном и диффузионном. В первом случае время удерживания определяется в основном энергиями адсорбционного взаимодействия макромолекул и молекул элюента с поверхностью твердого тела и между собой (как и в адсорбционной жидкостной хроматографии молекул, см. лекции 16 и 17). Во втором случае время выхода вещества зависит в основном от гео- [c.337]

    В настоящее время колоночная хроматография вновь приобретает свое прежнее значение благодаря применению новых, более совершенных детекторов и методов жидкостной хроматографии под высоким давлением [20]. Этому способствовало также развитие теории газовой хроматографии и заимствование уже разработанных приемов из других методов. [c.354]

    Жидкостный хроматограф. Прогресс жидкостной хроматографии в значительной степени обусловлен прогрессом в создании соответствующей аппаратуры. Создание высокоскоростного жидкостного хроматографа открыло широкие перспективы для использования метода жидкостной хроматографии в исследовании объектов природного и биохимического происхождения, высоко-кипящих продуктов тяжелого органического синтеза, где другие методы хроматографии имеют ограниченную применимость. [c.45]

    XI. МЕТОДЫ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.27]

    На развитие подхода к выбору состава композиций ПАВ большое влияние оказали также работы Хила и Рида, показавшие взаимосвязь фазового поведения системы ПАВ — нефть — вода и эффективности вытеснения нефти [38]. Исследования были направлены на получение корреляционных зависимостей, связывающих условия получения систем с оптимальным фазовым поведением, с природой ПАВ, спиртов, солей и углеводородов. В работе [96] рассматриваются корреляционные зависимости для ряда очищенных ПАВ, относящихся к нефтяным и синтетическим сульфонатам и окси-этилированным ал кил фенолам. Рассматривая смеси АПАВ и НПАВ, авторы отмечают, что такие смеси не подчиняются правилам линейной корреляции параметров и мольных полей каждого ПАВ и смеси. Отмечено, что смеси АПАВ и НПАВ проявляют сложное фазовое поведение, так как эти ПАВ в смесях ведут себя не как единое целое, а как самостоятельные компоненты. Несмотря на трудности в описании фазового поведения смесей АПАВ и НПАВ, авторы отмечают, что такие смеси должны иметь преимущества перед АПАВ, проявляющиеся в большей устойчивости при повышенной минерализации и меньшем влиянии температуры на фазовое поведение таких смесей, так как с повышением температуры растворимость АПАВ повышается, а НПАВ понижается. В работе [95] с помощью метода жидкостной хроматографии высокого давления было изучено распределение между фазами (водной, углеводородной и мицеллярной) ПАВ разных классов. Авторы пришли к следующим выводам  [c.105]

    Хотя распределительная хроматография была открыта как метод жидкостной хроматографии, преимущества ее полностью проявились только при использовании в газовой хроматографии, для которой характерны высокая разделяющая способность, малая величина проб и широкая область температур. Идея распределительной хроматографии с газообразной подвижной фазой была высказана еще Мартином и Сингом в 1941 г., но экспериментально развита только Джеймсом и Мартином в 1952 г. [c.14]


    Анализ группового состава сырья в ходе окисления методом жидкостной хроматографии на силикагеле показывает, что наиболее нестойкими к окислению являются ароматические фракции, входящие в состав мальтенов [2]. Имеющиеся сведения [4—6  [c.72]

    Классификация. методов жидкостной хроматографии [c.27]

Рис. 15.3-2. Принципиальная схема реализации метода жидкостной хроматографии на микрочипе. Рис. 15.3-2. <a href="/info/24285">Принципиальная схема</a> реализации <a href="/info/279706">метода жидкостной хроматографии</a> на микрочипе.
    Определение углеводородного состава нефти и отдельных ее температурных фракций проводили методом жидкостной хроматографии на силикагеле в условиях градиентного элюирования с рефрактометрическим детектированием. Исследовали нефти из 1-го (скв. № 54 и 73), Мергельного (скв. № 20 и 51) и 2-го песчаного (скв. № 33 и 92) горизонтов. Физико-химическая характеристика образцов [c.71]

    HL КЛАССИФИКАЦИЯ МЕТОДОВ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ 8 [c.40]

    Метод жидкостной хроматографии с флюоресцирующими индикаторами (метод ФИА) является весьма перспективным при определении группового углеводородного состава нефтепродуктов. Применяется он для фракций, выкипающих до 315° С [1]. Однако отечественная промышленность флюоресцирующих индикаторов для ФИА не выпускает. В то же время в литературе имеются указания о возможности выделения индикаторов из некоторых высокомолекулярных продуктов — озокерита, асфальтита и др. [2]. [c.180]

    Наличие хиральных атомов в некоторых макроциклических лигандах позволило использовать эти макроциклы для разделения рацемических солей и, в частности, для разделения замещенных хиральных аммонийных солей При этом применяют как метод жидкостной хроматографии, так и иммобилизацию оптически активных краун-эфиров на различных носителях Возможно осуществление асимметрического синтеза на основе использования оптически активных краун-эфиров в мягких условиях [41, 42] [c.21]

    Ш КЛАССИФИКАЦИЯ МЕТОДОВ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. [c.8]

    XI. МЕТОДЫ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ....................................................................................28 [c.40]

    Разделение бензола, нафталина и фенантрена методом жидкостной хроматографии — типичный пример разделения высококипящих органических веществ, трудно разделяемых методом газовой хроматографии. Разделение методом ВЭЖХ проходит за 5 мин, время удерживания возрастает с увеличением числа ароматических колец. Ароматические вещества хорошо детектируются при А, = 254 нм. [c.209]

    Определение в сточных водах полициклических ароматических углеводородов (флуорантена, бензфлуорантена, бензпирена, бенз-перилена и индопирена) методом жидкостной хроматографии под давлением, которая используется для массовых серийных анализов [18], сводится к следующему. [c.324]

    Задачи работы разделить высоко- и низкомолекулярные вещества методом жидкостной хроматографии в колонках с гелем спектрофотометрически определить белок и низкомолекулярную примесь. [c.235]

    Обе величины (б и (о) часто используются при анализе нефтей и нефтепродуктов. Для углеводородов имеются подробные классификационные таблицы (см. ПХХ1), позволяющие по величине дисперсии установить число и расположение кратных связей и ароматических колец, если приблизительно известны температура кипения или молекулярная масса. Такие определения весьма полезны, в частности, при анализе нефтяных фракций методом жидкостной хроматографии, когда требуется установить природу выходящих из колонки углеводородов различных классов. [c.204]

    Определение гиббсовской адсорбции статическим методом производилось по формуле (14.2), причем концентрации цимаринав исходном и в равновесном растворе над адсорбентом находили методом жидкостной хроматографии на вспомогательной колонне. На рис. 14.15 показана изотерма, определенная в статических условиях при более высоких (приблизительно на два порядка), чем на рис. 14.14, концентрациях. Зкстраполяция наклона этой изотермы к с=0 дает =5,0 см /г, что также практически совпадает со значениями, полученными из хроматограмм. Таким образом, прямой метод жидкостной хроматографии (из анализа формы пиков) позволяет в этом случае слабой адсорбции найти правильное (равновесное) значение константы Генри и оп-Рис. 14.13. Хромато- ределить недоступную для статических измере-граммы на силикаге- ний начальную часть изотермы адсорбции. Так ле, силанизированном как элюент здесь СОСТОИТ из смеси этанола (30%) и воды (70%), а адсорбентом служит гидрофобизированный силикагель, то попадание в элюент влаги из воздуха не может повлиять на величины а , и п . [c.264]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Отправной точкой бурного развития многих методов хроматографического анализа является работа лауреатов Нобелевской премии А. Мартина и Р. Синд-жа. Ими был предложен и разработан метод распределительной хроматографии (1941 г.). Для описания размывания хроматографической зоны они использовали модель теоретических тарелок, применявшуюся ранее в теории дистилляции. В 1946 г. Р. Синдж предложил метод жидкостной хроматографии с липофиль-ной неподвижной фазой, известный сейчас как жидкостная хроматография на обращенной фазе. [c.583]

    Определение динамических параметров адсорбции алкила-ромктических углеводородов рядов бензола, нафталина, фенантрена и было целью этой работы. В качестве инструментов исследования были выбраны экспресс-метод жидкостной хроматографии, разработанный в БашНИИ НП [9], и модельный синтез. [c.17]

    Из исходных остатков методом жидкостной хроматографии ыли выделены групповые компоненты, иденгификация которых проводилась по коэффициенту преломления п [6]. Фракцию с п 2 ниже 1,49 относили к парафино-нафтеновым углеводородам с от 1,49 до 1,53 —к моноциклическим с от 1,53 до 1,59 —к бициклическим с п выше 1,59 — к полицикличе- ским углеводородам. Смолы отделяли визуально. Кроме того, были выделены нерастворимые в изооктане асфальтены и нерастворимые в бензоле карбоиды. Для выделенных компонентов определяли плотность, элементный состав и содержание углерода в ароматических кольцах (методом ИК-спектроскопии). Качеств групповых компонентов представлено в табл. 2. [c.54]

    А. получают взаимод. ацетона с уксусным ангидридом в присут. ВРз (выход 80-85%) либо с этилацетатом в присут. jHjONa или амидов Na и Li (выход 40%). Применяют в аналнт. химии при экстракц. разделении мн. элементов, напр. А1, Со, Си, Ре(1П), Мо, Мп, РЬ, Ti, спектрофото-метрич. определении Ве, гравиметрич. определении Se и Zr, прн анализе неорг. в-в методом жидкостной хроматографии. [c.226]

    Выделение. Одии из первых этапов выделения Б,-получение соответствующих органелл (рибосом, митохондрий, ядер, цитоплазматич. мембраны) с помощью дифференциального центрифугирования. Далее Ь переводят в растворимое состояние путем экстракции буферными р-рами солей и детергентов, иногда-неполярными р-рителями. Затем применяют фракционное осаждение неорг. солями [обычно (N 14)2804], этанолом, ацетоном или путем изменения pH, ионной силы, т-ры. Для предотвращения денатурации работу проводят при пониж. т-ре (ок. 4°С) с целью исключения протеолиза используют ингибиторы протеаз, нек-рые Б. стабилизируют полиоламн, иапр. глицерином. Дальнейшую очистку проводят по схемам, специально разработанным для отдельных Б. илн группы гомологичных Б. Наиб, распространенные методы разделения-гель-про-никающая хроматография, ионообменная и адсорбц. хроматография эффективные методы-жидкостная хроматография высокого разрешения и аффинная хроматография. [c.250]


Смотреть страницы где упоминается термин Методы жидкостной хроматографии: [c.33]    [c.80]    [c.265]    [c.6]    [c.12]    [c.27]    [c.640]    [c.29]   
Смотреть главы в:

Жидкостная хроматография нефтепродуктов -> Методы жидкостной хроматографии

Жидкостная хроматография нефтепродуктов -> Методы жидкостной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография методы

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте