Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы защиты от газовой коррозии

    МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ГАЗОВОЙ КОРРОЗИИ [c.146]

    Легирование металлов. Методы защиты, связанные с изменением свойств корродирующего металла, осуществляются при помощи легирования. Легирование — эффективный (хотя обычно дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава обычно вводят компоненты, вызывающие пассивирование металла. В качестве таких компонентов применяются хром, никель, вольфрам и др. Широкое применение нашло легирование для защиты от газовой коррозии. При этом используют сплавы, обладающие высокой жаростойкостью и жаропрочностью. [c.217]


    Методы защиты от газовой коррозии [c.14]

    Па целенаправленном смещении равновесия основан один из методов защиты металлов от газовой коррозии — создание защитных атмосфер. [c.30]

    Учебное пособие состоит из двух глав. Первая глава содержит материал по основам металловедения. Даны основные закономерности кристаллизации металла, методы изучения и изменения структуры металла рассмотрены типичные фазовые равновесия в двойных сплавах показана связь диаграмм состояния со свойствами сплавов. Вторая глава посвящена коррозии металлов и методам защиты металлов от коррозии. Дана классификация видов коррозии, описаны методы изучения и оценки коррозии. Рассмотрены теоретические предпосылки электрохимической коррозии, влияние внешних и внутренних факторов на скорость процесса, характерные особенности наиболее распространенных видов электрохимической коррозии. При рассмотрении видов химической коррозии основное внимание уделено газовой коррозии. Среди методов защиты от коррозии выделены варианты электрохимической защиты, а также обработка коррозионной среды. [c.2]

    Наконец, одним из практических методов защиты металлов от коррозии является создание условий, уменьшающих или полностью исключающих возможность протекания коррозионного процесса (применение защитных газовых атмосфер, обескислороживание воды, катодная защита), которые могут быть рассчитаны с помощью термодинамики. [c.11]

    Для защиты от газовой коррозии используют в основном жаростойкие сплавы. Так, например, чтобы уменьшить скорость окисления углеродистой стали при 900 °С в три раза, достаточно ввести в нее 3,5 % алюминия в четыре раза — 5,5 % алюминия. Кроме жаростойкого легирования используется метод, заключающийся в применении защитных атмосфер. Газовая среда не должна содержать окислителей, находящихся в контакте со сталью, и восстановителей в контакте с медью. В качестве защитной атмосферы при термической обработке и сварке применяют инертные газы — аргон и азот. Также можно осуществлять термическую обработку сталей в атмосфере, содержащей азот, водород и оксид углерода. Сварка титановых и алюминиевомагниевых сплавов должна осуществляться в защитной среде аргона. [c.52]


    Основным методом защиты от газовой коррозии является применение легированных сплавов, обладающих жаростойкостью. [c.29]

    Из теории роста защитных пленок на поверхности металла (см. гл. I, стр. 29) вытекает, что при высокотемпературном окислении металла скорость коррозии его быстро уменьшается во времени благодаря образованию пленки окислов весьма совершенной структуры. Очевидно, что металл, на поверхности которого заранее образована окисная пленка, будет обладать меньшей скоростью коррозии в обычных условиях. Этот метод защиты металлов известен с давних пор. Процессы образования защитных окисных пленок называются по-разному, в зависимости от метода, положенного в их основу газовое оксидирование, воронение, анодирование. Кроме окисных пленок, защитным действием обладают и другие поверхностные соединения, особенно фосфатные. Процесс образования на поверхности стали, алюминия, цинка и других металлов пленки фосфатов называется фосфатированием. Этот процесс очень широко применяют в технике, используя фосфатные пленки в качестве подслоя под лакокрасочные покрытия. [c.160]

    Благодаря большой скорости диффузии в газовой фазе и высокой проникающей способности паров применение летучих ингибиторов коррозии позволяет обеспечить эффективную противокоррозионную защиту тех зон и такого оборудования, для которых невозможно использование ингибирующих растворов либо вследствие трудного доступа к ним, либо по другим причинам (невозможности полного дренирования остатков консервирующих растворов после консервации, недопустимости введения растворов по технологическим нормам). Вместе с тем применение летучих ингибиторов коррозии эффективнее таких пассивных методов защиты оборудования от стояночной коррозии, как вышеуказанные методы консервации с помощью азота и избыточного давления. [c.170]

    Коррозия металлов наносит большой ущерб народному хозяйству. Исследованиями и ориентировочными подсчетами установлено, что до внедрения эффективных методов защиты от коррозии почти одна треть ежегодно выплавляемых металлов безвозвратно терялась в результате химического разрушения их под действием жидких и газовых агрессивных сред. [c.3]

    Изложены теоретические основы газовой и электрохимической коррозии, рассмотрены ВИДЫ коррозии, коррозионная характеристика металлов, сплавов и неметаллических материалов. Приведены методы защиты машин и аппаратов ОТ коррозии. [c.1]

    Разработка методов защиты от коррозии металлов и сплавов в условиях агрессивных сред (жидких или газовых) при одновременном приложении тех или других механических нагрузок необходима для максимального продления срока службы ряда инженерных сооружений и конструкций. [c.583]

    В первой статье сборника рассматривается целесообразность использования понятия контролирующего фактора для характеристики механизма защитного действия и систематизации различных видов антикоррозионной защиты. Остальные работы сборника посвящены конкретным вопросам экспериментального исследования процессов коррозии и защиты металлических систем. В сборнике нашли отражение такие важные разделы, как исследование газовой коррозии при термообработке сплавов, коррозии и защиты металлов при травлении в кислотах, кислотостойкости металлов при повышенных температурах, коррозии нового металлического конструкционного материала — титана, его сплавов, сплавов ниобия с танталом и новые исследования по межкристаллитной коррозии нержавеющих сталей. В сборнике помещены последние работы по исследованию коррозионной усталости сталей и по коррозии и защите в некоторых производствах химической промышленности. Цель сборника — на основе современных методов исследования и имеющихся научных достижений указать некоторые новые пути и дать вполне определенные рекомендации нашей промышленности по борьбе с коррозионным разрушением. [c.3]

    Какие методы защиты от газовой коррозии вы знаете Что такое жаростойкость и жаропрочность  [c.405]

    В технике защиты от коррозии широко применяются неорганические покрытия, состоящие из оксидов, фосфатов, фторидов и других неорганических соединений. Неорганические покрытия получают химическими и электрохимическими методами оксидированием, хроматированием, фосфатированием, анодированием. К неорганическим покрытиям относятся эмали, которые применяются в бытовой технике и для защиты металлов от газовой коррозии при высоких температурах. Сравнительно недавно начал применяться электрофоретический метод нанесения покрытий. [c.50]


    В руководстве даны 34 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов от коррозии (защитные покрытия, электрохимическая защита, применение замедлителей). Во введении авторы сочли необходимым более детально остановиться на принятых современных методах обработки и оформления результатов экспериментальных исследований (ведение отчета, оценка точности измерений и основные приемы графического анализа опытных данных). При недостаточном бюджете времени или других затруднениях требование оценки точности измерений может быть опущено. Здесь также кратко указаны сведения о работе с некоторыми наиболее часто встречающимися приборами и аппаратами коррозионной лаборатории, а также сведения о мерах безопасности при проведении лабораторных работ. В приложении собрано минимальное количество справочных данных, необходимых при выполнении работ коррозионного практикума. [c.7]

    ХИМИЧЕСКАЯ (ГАЗОВАЯ) КОРРОЗИЯ МЕТАЛЛОВ И МЕТОДЫ ЗАЩИТЫ ОТ НЕЕ [c.34]

    Основными методами защиты металлов от газовой коррозии являются  [c.37]

    МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ ГАЗОВОЙ КОРРОЗИИ [1, 4, 12, 17-20, 371 [c.64]

    Основными способами защиты от газовой коррозии являются легирование металлов, создание защитных покрытий и замена агрессивной газовой среды. Для изготовления аппаратуры, подвергающейся действию коррозионно-активных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля или кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. Для защиты используют и неметаллические покрытия, изготовленные из керамических и керамико-металлических (керметы) материалов. [c.687]

    Методы защиты металлов от газовой коррозии следующие жаростойкое легирование, нанесение покрытий и введение в газовую фазу компонентов, образующих на поверхности металла защитную пленку. Последний метод еще не нашел широкого применения. Жаростойкость железа мала, что исключает применение низколегированных углеродистых сталей в окислительных средах при Т > 500 С. Созданы высокожаростойкие стали, скорость окисления которых ниже, чем у Ре, в сотни и тысячи раз (окалиностойкие стали) 11]. [c.417]

    Эффективным средством защиты резервуаров от коррозии является применение комбинированных покрытий днище и нижний пояс защищают бетонным покрытием, а крышу и верхний пояс — перхлорвиниловыми эмалями. Перед нанесением покрытий поверхность резервуаров тщательно зачищают от остатков нефтепродуктов, применяют и обработку пескоструйными аппаратами. Поверхность резервуаров должна быть как можно чище. С повышением чистоты металлической поверхности прочность покрытий увеличивается. Эффективным методом защиты резервуаров от коррозии является хранение в герметичных емкостях, предотвращающих поступление свежего кислорода и паров воды в резервуары применение резервуаров, у которых отсутствует паровое пространство, работающих под давлением, а также имеющих газовую обвязку с газокомпенсаторами. Специальными экспериментами показано, что при отсутствии кислорода в газовой фазе процессы коррозии даже в присутствии меркаптанов значительно замедляются. Таким образом, специальными технологическими мероприятиями можно уменьшить и практически устранить процессы коррозии технических средств. [c.128]

    Алюминий характеризуется высоким сопротивлением газовой коррозии вплоть до температур его плавления (660 °С). Однако уже при температуре выше 300 С алюминию свойственна высокая ползучесть и совершенно недостаточная механическая прочность. Легирование алюминием многих сплавов (например, на основе железа) заметно повышает их жаростойкость и часто используется для этой цели. Наиболее распространенный вид противокоррозионной защиты алюминия и его сплавов—искусственное образование более сплошных, прочных и утолщенных слоев оксидов, что достигается обработкой в окислительных растворах или методом анодного оксидирования [c.265]

    ЗАЩИТА ОТ КОРРОЗИИ, осуществляется след. осн. методами 1) созданием условий для образования на пов-сти металла при взаимод. с агрессивной средой защитных слоев (оксидов, солей), обеспечивающих пассивность металлов. Формирование таких слоев достигается легированием металла, введением в среду пассиваторов и ингибиторов коррозии или с помощью анодной электрохим. защиты. Защитные слои могут образовываться также при адсорбции орг. ингибиторов из среды 2) нанесением лакокрасочных, эмалевых, пластмассовых и др. защитных покрытий на пов-сть металлич. изделий 3) понижением содержания в среде в-в, вызывающих или ускоряющн с коррозию, путем спец. очистки или введением добавок, реагирующих со стимуляторами коррозии 4) электрохим. защитой 5) гомогенизирующей термич. обработкой металлов и сплавов с целью получ. возможно более однородной структуры 6) рациональным конструированием, исключающим наличие или сокращающим число и размеры особо опасных с точки зрения корро,зии зон в изделиях и конструкциях (щелей, сварных швов, застойных участков, электрич. контактов разнородных металлов и др.) илн обеспечивающим усиленную защиту таких зон (см. Контактная коррозия. Коррозионная усталость, Коррозия под напряжением, Фреттинг-коррозия)] 7) повышением термодинамич. стабильности сист. металл — среда, напр, использ. благородных и полублагородных металлов, подбором равновесного состава газовых атмосфер, в к-рых производится обработка металлов и т. д. Часто использ. комбинированные методы 3. о. к. В кач-ве нер защиты рассматривают также замену металлич. конструкц. материалов химически стойкими неметаллическими. [c.205]

    В руководстве даны 33 работы, экспериментально иллюстрирующие такие важные разделы курса, как газовая коррозия и жаростойкость металлов, механизм процессов электрохимической коррозии (электродные потенциалы, электрохимическая гетерогенность, поляризация и деполяризация, явление пассивности), наиболее интересные и важные случаи электрохимической коррозии (контактная коррозия, устойчивость в кислотах, подземная и атмосферная коррозия, межкристаллитная и точечная коррозия, коррозия сварных соединений, коррозионное растрескивание и усталость), различные методы защиты металлов [c.5]

    Усовершенствованием простейших испытаний на газовую коррозию весовым методом является осуществление контроля состава газовой фазы и регулирование скорости ее течения. Схема одной из наиболее простых установок [1], позволяющих производить такие измерения, приведена на рис. 31. Фарфо о-вая или кварцевая труба 1 вводится в горизонтальную трубчатую печь 2, снабженную терморегулятором 3. Концы трубы иа 200 — 300 мм выходят из печи с каждой стороны, что позволяет применять резиновые пробки 4 и 5. В пробку 4 вставляют две тонкие кварцевые трубки 6, на которые помещают металлические подставки 7 для образцов 5. Подставки изготовляют из стойкого и инертного материала. Для стали пригодны нихром и серебро. В одну из трубок 6 вводят термопару 9, которую можно передвигать для того, чтобы измерять температуру каждого образца. Через пробку 4 проходит еще одна труба 10, подающая газ. Через пробку 5 пропущена отводная трубка 11. Скорость газового потока изменяется при помощи реометра 15, отделенрого от реакционного пространства склянкой с серной кислотой 14. Подача газа осуществляется избыточным давлением или подключением всего прибора ( за реометром) к водоструйному насосу. При необходимости очищать воздух от влаги и СО2 к правой части установки (до трубки 10) присоединяют обычные очистительные устройства (рис. 31, г). В тех случаях, когда необходимо пропускать газ определенного состава, вместо установки для очистки подсоединяют бом1бы или газометры с соответствующими газами. Если в последнем случае газ действует на резину, то следует применить кварцевую трубку и кварцевый шлиф. В тех случаях, когда необходимо присутствие большого количества пара в воздухе, применяют смеситель, представленный иа рис. 31. Испытания М0Ж1Н0 проводить, выбирая показателем коррозии как потерю, так и увеличение веса. При испытании в воздухе печь может быть нагрета заранее до нужной температуры. При испытании в других газах образцы вносят в холодную печь, продувают -всю систему для удаления воздуха, регулируют скорость протекания выбранного газа и повышают температуру до требуемой. После окончания опыта подставки выдвигают, образцы переносят в тигли с крышками и последние ставят в эксикатор для охлаждения. Такие испытания проводят на установках, называемых термовесами [1] (рис. 32). К левой чашке весов на длинной платиновой нити на нихромовом или серебряном крючке подвешивается образец в виде небольшой пластинки (обычно 15 X 30 мм или 20 X 50 мм). Образец помещают в печь. Вся система предварительно уравновешивается. Сверху печь закрывают крышкой 10 и дополнительными экранами 8 и 9, чтобы защитить чашку весов от конвекцион- [c.85]

    Метод 36 — показатель 46. Для характеристики термостойкости пленки ПИНС учитывают температуру каплепадения сухого остатка (ГОСТ 6793—74), способность пленки не изменять своих свойств при высоких температурах в сухих и паровых (влажных) термостатах, способность защищать металл от коррозии после выгорания основной массы продукта. Последнее характеризует возможную защиту от коррозии нагретых до высоких температур металлических поверхностей — наружные поверхности двигателей внут->еннего сгорания, выхлопные трубы, лопатки газовых турбин и пр. Пленку 1ИНС оценивают следующими нормами  [c.108]

    Одним из методов защиты от ванадиевой коррозии является вдувание доломитовой пыли в газовый поток окислы щелочноземельных металлов дают с пятиокисью ванадия тугоплавкие соединения. Уменьшается ванадиевая коррозия и в условиях неполного сгорания примеси несгоревшего углерода восстанавливают У2О5 в У2О3. [c.151]

    Для изготовлния аппаратуры, подвергающейся действию коррозионноактивных газов, применяют жаростойкие сплавы. Для придания жаростойкости стали и чугуну в их состав вводят хром, кремний, алюминий применяются также сплавы на основе никеля пли кобальта. Защита от газовой коррозии осуществляется, кроме того, насыщением в горячем состоянии поверхности изделия некоторыми металлами, обладающими защитным действием. К таким металлам принадлежат алюминий и хром. Защитное действие этих металлов обусловлено образованием на их поверхности весьма тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой. В случае алюминия этот метод носит название алитирования, в случае хрома — термохромирования. [c.537]

    Подземное хозяйство промышленных площадок и городов представляет собой сложную и многообразную по видам сооружений сеть металлических коммуникаций, которая характеризуется большой насыщенностью подземными металлическими сооружениями, среди которых имеются газовые и водопроводные сети, мощные водоводы, теплопроводы, кабели электроснабжения и связи и др. Применение в подобных условиях существующих аналитических методов и методов моделирования весьма ограничено. Но в то же время обеспечение защиты особенно в зоне действия блуждающих токов необходимо сразу же после укладки сооружения в грунт. Это означает, что проектные решения требуют уточнения натурными испытаниями на реальных сооружениях в реальных условиях. Работа по наладке запроектированных и построенных средств защиты, определению и выбору оптимальных параметрёЪ и схем электрохимической защиты, а также, в случае необ1одимости, определения количества и мест размещения дополнительных средств защиты требует силового оборудования, разнообразной аппаратуры и измерительной техники, кабелей, материалов, инструмента. Выполнение работ в связи со срочностью решения вопросов защиты от коррозии не может осуществляться длительное время из-за опасности сквозных коррозионных повреждений, особенно в зоне действия блуждающих токов. [c.196]

    При гуммировании типовой химической аппаратуры листовой резиной с целью защиты от коррозии жидкими и газовыми средами обычно ограничиваются толщиной покрытия 4—6 мм. Для защиты от интенсивного абразивного и гидроабразивного износа импеллеров и статоров флотационных машин, рабочих колес Песковых насосов, конвейерных роликов и т. п. оборудования такая толщина недостаточна. Покрытия указанного назначения толщиной 10—15 см получают путем многократного наложения на подготовленное изделие заготовок, выкроенных из утолщенных каландрованных листов сырой резины. Оклеенное резиной изделие закладывают в нагретую специальную форму, покрытую силиконовым или другим антиадгезионным составом, прессуют фигурным пуансоном и проводят термическую вулканизацию. Для гуммирования вышеуказанного оборудования применяют стандартные резины 2566, 6252, но иногда и более жесткие смеси на основе каучука СКД и композиций этого износостойкого каучука с другими каучуками. Технология гуммирования деталей машин описана в монографии [11]. Гуммирование методом формования сырой резиновой массы с последующей вулканизацией широко применяется при получении резинометаллических деталей, облицованных резинами на основе фторкау-чуков, кремнийорганических каучуков и других эластомеров специального назначения. В более редких случаях гуммирование осуществляется с помощью заранее отформованных и провулка-низованных вкладышей, которые тем или иным способом закрепляют на поверхности защищаемого изделия. Примером крупногабаритных изделий, гуммированных таким способом, могут являться шаровые мельницы из мелкогабаритных изделий можно указать на диафрагмовые чугунные вентили с кислотостойкими вкладышами. [c.11]


Смотреть страницы где упоминается термин Методы защиты от газовой коррозии: [c.45]    [c.116]    [c.504]    [c.64]   
Смотреть главы в:

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т1 -> Методы защиты от газовой коррозии

Коррозия металлов -> Методы защиты от газовой коррозии




ПОИСК





Смотрите так же термины и статьи:

Газовая коррозия

Защита от коррозии

Метод защиты от коррозии

Методы защиты



© 2024 chem21.info Реклама на сайте