Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы на базе этилена

    Практически, учитывая потребность и наличие сырьевой базы, этот метод позволяет производить все спирты от Сд до С1в-С,о. Сырьем для процесса служат этилен, пропилен, бутилен, амилен, димеры, тримеры и сополимеры пропилена и бутилена и т. д. [c.5]

    Производство полиолефиновых волокон имеет благоприятные технико-экономические предпосылки. Сырьевая база (этилен, пропилен) для производства этих волокон по существу является неограниченной, процесс (получения волокна крайне [c.9]


    Такие исследования проводились, например, в США для поиска оптимального развития нефтехимической промышленности. В рассмотренную выше модель входили 170 различных веществ и 250 различных технологий. Целевой функцией при оптимизации являлся минимум углеродсодержащего сырья (природный газ, нефть, каменный уголь). Были определены предпосылки, при которых возможно внедрение десяти новых технологических процессов производства этилена, этилен гликоля, малеинового ангидрида, фенола, стирола, винилацетата. Отдельные технологии, предназначенные для внедрения, приведены ниже, а результаты оптимизации и изменения в сырьевой базе приведены в табл. 1.1 и 1.2  [c.11]

    Химические процессы позволяют получать сырье для многих нефтехимических производств, в частности, непредельные углеводороды — этилен, пропилен, бутилены, бутадиен, ароматические углеводороды - бензол, толуол, этилбензол, ксилолы, изопропилбензол и др. На базе такого сырья осуществляется производство пластмасс, синтетических каучуков, синтетических волокон, моющих средств и других ценных продуктов. [c.618]

    По мере развития химической промышленности алифатических соединений на базе моноолефинов возникла необходимость дополнительно производить олефины, особенно этилен, независимо от процессов, в результате которых эти углеводороды образуются в качестве побочных продуктов. [c.9]

    Отмечена эффективность процесса с использованием этилен-про-пилен-бутиленовой фракции, что позволяет расширить сырьевую базу этого процесса. Полученный катализат может быть разделен путем ректификации на бензольную (н.к.-90°С) и алкилбензольную (90°С-к.к.) фракции. При рециркуляции бензольной фракции достигается полное преврашение бензола. [c.346]

    Разработан подход к описанию макрокинетики процесса полимеризации в промышленном реакторе с учетом совместного влияния химической кинетики и кинетики переноса. Обоснована его целесообразность в связи с необходимостью и потенциальной возможностью налаживания выпуска широкого ассортимента синтетических каучуков с использованием имеющейся сырьевой базы и простаивающего оборудования предприятий нефтехимического комплекса. Приведен обзор работ в области моделирования процесса полимеризации при производстве этилен-пропиленового [c.78]


    Интересным направлением является синтез чередующихся, или альтернативных, полимеров, которые получаются путем сополимеризации бутадиена или изопрена с известными, но ранее не применявшимися для этих целей мономерами, например с пропиленом или этиленом. Использование таких мономеров позволяет не только улучшить качество каучуков, но и существенно расширить сырьевую базу за счет дешевых мономеров, получаемых в процессе пиролиза. [c.17]

    В течение последних 30 лет в сырьевой базе отечественной и мировой нефтехимии ведущая роль принадлежит низшим олефинам — этилену и пропилену. Основным источником их производства служит процесс термического пиролиза углеводородов с водяным паром. Именно на установках пиролиза получают сегодня первичные продукты, обеспечиваюш,ие сырьем производства пластических масс, синтетических смол, каучуков и волокон. В нашей стране накоплен значительный опыт в области эксплуатации отечественных и зарубежных установок, разработки и освоения новых технических решений по системам пиролиза различных углеводородов. [c.3]

    Сырьевая база промышленности органического синтеза тесно связана со структурой топливно-энергетического баланса отдельных регионов и стран. Преобладание угля в этом балансе создало в свое время сырьевую основу для производства химической продукции на коксохимических заводах и на базе ацетилена. С переходом энергетики и транспорта на преимуш,е-ственное использование нефти и газа ацетилен в большинстве промышленных процессов был вытеснен нефтехимическим этиленом, а источником получения ароматических углеводородов, помимо коксохимического производства, стала нефтепереработка. Современный этап развития промышленности органического синтеза определяется обычно как нефтехимический однако его можно называть и олефиновым . При мировом объеме производства продуктов в процессах тяжелого органического синтеза, равном 100 млн. т в год, мош ности по этилену достигают 50 млн. т в год [2]. [c.6]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Процесс характеризуется высоким выходом жидких продуктов пиролиза с уникальными свойствами, позволяющими на базе их переработки получать углеродное графитное волокно, специальные углеродистые материалы, масла специального назначения, пеки и другие ценные продукты. При выборе оптимальных условий пиролиза фирма ориентировалась не столько на получение высоких выходов низших олефинов, сколько на обеспечение максимально выгодного состава жидких продуктов, что сопровождалось, как правило, высоким соотношением в газе пиролиза ацетилена к этилену (1 1). [c.196]

    С появлением более совершенных каталитических методов получения ароматических углеводородов из нефтепродуктов (гидроформинг, платформинг) процесс пиролиза, казалось бы, утратил свое значение. Быстрое возрождение пиролиза связано с развитием нефтехимии — с ростом потребности в газах, содержащих непредельные углеводороды,— этилен, пропилен, бутилен. Содержание этих углеводородов в газах пиролиза в несколько раз выше, чем в газах коксования, термического и каталитического крекинга. С целью расширения сырьевой базы для процес- [c.72]

    Кооперирование и комбинирование различных процессов, установок и производств, взаимосвязанных единой технологией, позволяет более полно использовать сырье, утилизировать отходы производства, объединить последовательные стадии переработки. Например, в пределах одного комбината можно получать ацетальдегид, уксусную кислоту, поливинилбутираль и другие продукты на базе производства винилацетата. В производствах, объединенных единой технологией, в качестве сырья используется этилен, получаемый при переработке нефтяных фракций. При этом одновременно образуется пропилен, являющийся сырьем для оксосинтеза, а далее 2-этилгексанола и пластификаторов. Для этих же целей может использоваться и ацетальдегид. [c.19]


    Во многих странах налажено промышленное производство этилен-пропиленового каучука. В США и Канаде в промышленном масштабе получают кристаллич. блоксополимеры пропилена с этиленом. Из др. полиолефинов, не содержащих заместителей в цепи, наиболее перспективен полибутен-1. Для синтеза его используют также дешевое сырье — бутиленовые фракции продуктов нефтепереработки. Кроме того, открыт и реализован процесс каталитич. димеризации этилена в бутен-1 в мягких условиях с практически количественным выходом. Все это создало прочную сырьевую базу для организации производства этого полимера. В сравнительно небольших количествах его уже получают (данные за 1972) в США ( 10 тыс. т) и ФРГ (ок. 5 тыс. т). [c.227]

    Современное производство хлорорганических растворителей, таких как три- и тетрахлорэтилен, базируется на этилене, про-иан-пропиленовой фракции и, в меньшей степени, этане (Пат. 3987118, США, 1973). Методы, основанные на использовании ацетилена, в значительной мере устарели, однако до настоящего времени они осуществляются в промышленности. Совмещение процессов гидро- и дегидрохлорирования позволяет создать сбалансированную по хлороводороду технологическую схему, поэтому при наличии дешевого ацетилена данный способ может конкурировать с другими. Существенную роль в структуре сырьевой базы играют хлорорганические отходы производства винилхлорида, дихлорэтана, аллилхлорида, эпихлоргидрина и ряда других хлорорганических производств. [c.95]

    Наиболее выгодной разновидностью группирования в нефтехимической промышленности является комплексная форма, охватывающая все технически связанные между собой производственные процессы — от получения олефинов (этилена, пропилена, бутилена и т. п.) и ароматических углеводородов с их производными до выпуска готовых продуктов на базе этого сырья. При этом следует иметь в виду, что, поскольку начальный нефтехимический процесс (выделение и очистка углеводородов) осуществляется с помощью нефтеперерабатывающего оборудования, этилен, пропилен, бутилен и другие продукты можно получать, не выходя за рамки нефтеперерабатывающей промышленности, так сказать, ее собственными силами. [c.103]

    Широкое развитие процессов алкилирования, хлорирования, окисления, гидрирования и т. д. в производстве многих продуктов органического синтеза, а также их зависимость от сырьевой базы обусловливает создание сложных связей. В этих производствах во многих случаях будут вынуждено складываться тесные взаимосвязи между процессами получения отдельных продуктов (например, при комплексной переработке некоторых видов углеводородного сырья — прямогонных бензинов на этилен и пропилен, в совместных производствах каустической соды, хлора и продуктов его переработки, фенола и ацетона, уксусной кислоты и уксусного ангидри- [c.62]

    Окислением метана может быть получен формальдегид — главнейшее сырье для получения различных формальдегидных полимеров, достаточно широко применяемых в строительной технике и других отраслях. Большой экономический интерес представляет крекинг метана для получения ацетилена. Ацетилен наряду с этиленом, пропиленом, бутиленом является ведущим видом исходного сырья, на котором базируется значительная часть современной химии полимеров (поливинилхлорид, хлоропрен), имеющих ведущее значение для строительной техники. Следует отметить, что ацетилен до последнего времени производился из карбида кальция. Этот процесс очень громоздок, с большим расходом электроэнергии, высокими капиталовложениями и эксплуатационными расходами. Вот почему получение ацетилена из углеводородного сырья при наличии дешевой и доступной сырьевой базы и комплексном использовании побочных продуктов процесса может быть организовано весьма эффективно и экономически, и технически. [c.9]

    Ацетилен применяется главным образом для получения уксусного альдегида (исходный продукт для производства бутадиена, уксусной кислоты и др.), хлорированных этапов и этиленов, винилацетилена и хлоропрена, виниловых эфиров (хлористого винила и винилацетата) и газовой сажи. Процессы получения вышеуказанных соединений были созданы в основном на базе карбидного ацетилена (схему реакций ацетилена см. в приложении). [c.262]

    Наличие доступной сырьевой базы. Сырьем для процесса служат этилен, пропилен, бутилен, а также продукты полимеризации пропилена (три- и тетрамеры пропилена) и гептан, получаемый сополпмеризацией пропилена с бутиленами. Эти олефины в больших количествах поставляются нефтеперерабатывающей промышленностью. Наибольшее значение имеет пропилен. На его основе (включая полимеры) получают до 80% всей продукции оксосинтеза [6]. [c.181]

    Например, следует отметить новое направление в создании технологии производства ацетальдегидаи нитрила акриловой, кислоты на базе одностадийных процессов путем замены ацетилена более доступными и экономически выгодными этиленом и пропиленом. [c.186]

    Третья ветк а—производство на базе олефиновых углеводородов. Важнейшими полупродуктами в промышленности нефтехимического синтеза являются низкомолекулярные олефиновые углеводороды—этилен, пропилен и бутилены. На базе переработки этих продуктов основаны современные производства высококачественных пластических масс, синтетических волокон, синтетического каучука, моющих веществ и целого ряда других химических продуктов, таких, как синтетические спирты, альдегиды, кетоны, гликоли, фенол, окись этилена, нитрил акряловой кислоты и др., являющиеся, в свою очередь, ценными промежуточными продуктами в производствах органического синтеза. Основным источником получения олефиновых углеводородов является процесс пиролиза нефтепродуктов. [c.314]

    Таким образом, арены являются важнейшим видом сырья для промышленности основного органического синтеза, по масштабам производства и потребления уступающим лишь этилену, а по ассортименту вырабатываемой продукции превосходящим другие классы углеводородов. Дальнейшее расЩирение использования аренов связано с выделением из нефтепродуктов полиметилпро-изводных бензола, комплексной переработкой жидких продуктов пиролиза нефтяных фракций, разработкой новых технологических процессов на базе, в частности, толуола и л-ксилола. [c.340]

    Но и в Европе чрезвычайно увеличилось производство алифатических соединений на базе олефршов. Этим занимаются многие фирмы, которые не имеют возможности приобретать химическое сырье у находящихся вблизи заводов по переработке нефти и природных газов. Такие заводы сами производят нужное им исходное сырье из легко транспортируемого материала — фракций нефти (в первую очередь лигроина и газойля). Все чаще нефть, а также фракции нефти перерабатывают и газообразные олефины, особенно в этилен. Переработка, осуществляемая различными методами, (югит-процесс, катарол, процесс Шелла, процесс Келлога) в основном сводится к тому, что лигроин или несколько более высококинящие фракции нефти подвер] ают кратковременному воздействию высокой температуры. При )том в относительно больших количествах образуются газообразные олефины и, в частности, много этилена. [c.11]

    На выбор ПАВ и их комбинаций решающее значение оказывают экономические факторы, производственные (сырьевая база, технология, энергетические ресурсы). Композиции ПАВ показали высокую эффективность при обезвоживании нефти в процессах подготовки обводненных нефтей к транспорту. В роли химических добавок выступают неионогенные и аминоактивные ПАВ или их смеси. Среди неионогенных ПАВ следует назвать вещества, построенные по типу простых эфиров (особенно аддукты алкилфенолов), блоксополимеры этилен- и пропиленоксида, атакжеоксиэтилированныежирные кислоты. [c.152]

    АКТУАЛЬНОСТЬ ТЕМЫ. В связи с ростом потребления бензинов высокого качества в последние годы бурно развиваются процессы получения метил-третбутилового эфира, диизопропилового эфира, бутиловых спиртов - кислородсодержащих соединений, используемых в качестве компонентов смешения бензина, которые позволяют улучшить октановые показатели наиболее экономически приемлемым способом. Поэтому пропилен, изобутилен и бутан-бутиленовая фракция сейчас являются углеводородным сырьем, равноценным этилену, доля которого в сырьевой базе нефтехимического синтеза до настоящего времени превалировала. Процессы гомогенного пиролиза и каталитического крекинга являются основными источниками получения низкомолекулярных олефинов. Разработанные новые способы пиролиза не нашли применения в промышленности вследствие сложности технологического и аппаратурного оформления. [c.3]

    Сегодня в связи с преобладанием бензина в сырьевой базе пиролиза под целевой продукцией процесса понимается не только этилен и пропилен, а также — фракция углеводородов С4 и пирокоиденсат, из которого получают бензол. Сопоставительные расчеты эффективности требуют учета балансов производства и потребления всего ассортимента продукции, производимой пиролизом углеводородов. Это особенно важно, когда исследуются варианты использования углеводородного сырья, взаимозаменяемого не только в производстве низших олефинов, но и в производстве моторных топлив, например пряхмогопного бензина и сжиженных газов. [c.210]

    Новый промышленный процесс получения л-метилстирола включает две стадии алкилирования толуола этиленом на цео литном катализаторе и дегидрирования этилтолуола на промышленном оксидном катализаторе [112]. На базе отечественных высококремнеземных цеолитов типа пентасила (ЦВМ, ЦВК и ультрасил) разработаны эффективные катализаторы алкилн-рования толуола этиленом, обладающие повышенной селектиВ ностью в отношении /г-изомера. [c.130]

    Мне довелось познакомиться с расположенным рядом с НПЗ Волгоградским химическим заводом, директором которого был известный химик Вячеслав Степанович Ситанов, а начальником производства хлора - Владимир Иванович Фисин, начинавший свою трудовую деятельность на Стерлитамакском химическом заводе в цехе производства хлора, а позже ставший начальником Объединения хлорной промышленности Минхимпрома СССР. Кроме хлора, химический завод выпускал и ряд хлорпроизвод-ных, в том числе инсектициды - хлорофос и др. В стадии строительства находилось производство хлорвинила на базе закупленного комплектного оборудования японской фирмы Куреха . Технологический процесс этого производства основывался на пиролизе нафты на ацетилен и этилен. [c.122]

    Было, однако, хорошо известно, что хлористый винил можно также изготовить из этилена, причем несколькими способами, например путем хлорирования этилена с получением 1,2-дихлорэтана и последуюпщм расщеплением на хлористый винил и хлористый водород. Этот двухстадийный процесс был более дорогостоя-цщм, чем синтез из ацетилена (требовал больших капитальных затрат и эксплуатационных расходов), он мог конкурировать с последним только если бы этилен стал вдвое дешевле ацетилена. И вот цена на этилен фактически снизилась до этого уровня. Это стало возможным в результате усовершенствования процессов крекинга нефти с получением смеси углеводородов, значительную долю которой составляют этилен и побочные продукты, имеюпще сбыт, например пропилен. Более того, огромное расширение возможностей сбыта полиэтилена создало прочную базу для производства этилена в очень большом масштабе и при значительном уменьшении его себестоимости. [c.44]

    В производстве КЗ и ПХЭ в США преобладают процессы на базе этйяена, йх доля составляет 93-9 йв, В Японии и Западной Европе основным сырьем для ТХЭ также является этилен, а для ПХЭ-наряду с этиленовыми процессами широкое нримевевие нашли процессы, использующие в качестве сырья пропан-пропилевовые фракции. Их доля в Японии составляет 56-58,6 [c.83]

    Применение комплексных галоидалюминийорганических соединений в электрофильном катализе. В большинстве промышленных электрофильных процессов (синтез полиизобутилена, бутил-каучука, алкилирование бензола этиленом и пропиленом) в качестве катализатора используется хлористый алюминий [1—5, 8—10]. Несмотря на универсальность и выдающиеся каталитические свойства, его применение не решает ряда актуальных задач электрофильного синтеза. К их числу относится получение полимеров изобутилена из промышленной фракции углеводородов С4 . Фракция С4 служит основной сырьевой базой изобутилеиа и кроме последнего содержит изомеры бутана и бутенов, бутадиен, небольшие количества Сг-, Сз- и Сб-углеводородов, соотношение между которыми меняется в зависимости от условий получения фракции [2]. На полимеризацию изобутилеиа (содержание во фракции 10—50%) другие компоненты фракции, например, бутилепы, оказывают заметное ингибирующее действие [9, 10, 59]. Особенно сильно оно выражено у бутадиена, соединений серы, аммиака и др., почему целесообразно их удаление из фракции 10, 59]. Полимеризация изобутилеиа из фракции С4 приводит к получению низкомолекулярных полиизобути-ленов или продуктов смешанной полимеризации ненасыщенных углеводородов 160—62]. Используемый катализатор (А1С1з в хлорэтиле или толуоле) отличает высокая чувствительность к составу сырья, затрудняющая регулирование молекулярной массы продукта остающаяся после неполного извлечения изобутилена фракция сжигается, вызывая загрязнение атмосферы [59]. [c.11]

    На базе исследований А. И. Доладугина с сотрудниками [258] этот процесс был осуществлен в промышленном масштабе в СССР, а за рубежом — на базе исследований Ипатьева [260, 261 ], Малышева [262]. Есть указания на то, что можно использовать НзРО для алкилирования бензола этиленом п бутиленом [264—267]. [c.132]

    В продолжение работ связанных с изучением процессов получения синтетических волокон на базе этилена, исследованы фазовые равновесия к объемные соотношения в системе бромхлорметан — этилен. [c.92]

    В экспериментальной части работы подробно изучен процесс получения ацетилена из различных продуктов нефтепереработки высокотемпературным пиролизом в трубчатой мно-101ЮТ0ЧН0Й печи — зависимость процесса от состава сырья, от температуры и давлений в реакционной зоне, от времени контактирования. Для каждого из примененных видов сырья изучен оптимальный технологический режим, с( ставлены материальные и тепловые балансы процесса. Испытаниями опытной Установки с применением в качестве сырья головной фракции прямогриного бензина показана возможность использования сырья тяжелее н. бутана для высокотемпературного пиролиза на ацетилен и этилен в трубчатой печи, и эТим значительно расширена сырьев ая база процесса. Теперь нет необходимости использовать для данного процесса дефицитное нефтехимическое сырье — н. бутан. [c.18]

    Основное практическое значение ароматизации в том, что этот процесс позволяет расширить рырьевую базу производства стирола. Мировое производство стирола по данным 80] на 1979 г. составляет около 11 млн. т в год и имеет тенденцию к росту. В связи с возрастанием спроса на этилен и бензол одним из перспективных методов получения стирола в будущем может оказаться ароматизация 4 винилциклогексена-1 (димер бутадиена-1,3)  [c.130]


Смотреть страницы где упоминается термин Процессы на базе этилена: [c.743]    [c.179]    [c.195]    [c.178]    [c.53]    [c.4]    [c.20]    [c.13]   
Смотреть главы в:

Оксихлорирование в хлорорганическом синтез за рубежом -> Процессы на базе этилена




ПОИСК





Смотрите так же термины и статьи:

Базы



© 2025 chem21.info Реклама на сайте