Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая кинетика Основные понятия и определения

    Основные положения и законы химической кинетики, а также метод переходного состояния могут быть применены при описании кинетики гетерогенно-каталитических процессов. Особенность такого описания здесь заключается в известной неопределенности в понятии катализатора и химического соединения молекулы реагирующего вещества с катализатором. Если в гомогенном катализе катализатор находится в молекулярном состоянии, которое может быть строго описано термодинамическими функциями состояния А Я, 5, ДО, то в гетерогенном катализе не всегда ясно, что принимать за молекулярную единицу катализатора. Атомы и молекулы, находящиеся на поверхности раздела фаз, не тождественны атомам и молекулам, находящимся в объеме фазы. Их термодинамические функции состояния отличны от термодинамических функций молекул объемной фазы. В настоящее время нет достаточно надежных методов определения или расчета активности Д Я, 5 и ДО молекул, находящихся на границе раздела фаз. Поэтому при выражении концентрации или активности катализатора, продуктов взаимодействия молекул субстрата с катализатором приходится прибегать к условным понятиям концентрации катализатора, выражая ее через свободную, незанятую поверхность. [c.637]


    Неизмеримо расширилась сфера применения" кинетических знаний и методов. Кинетика стала одной из научных основ химической технологии, входит в теоретический фундамент современной химии. Кинетические приемы исследования широко используются в аналитической и биологической химии. Значение кинетики подчас выходит за рамки химии ее результаты и методы применяют в экологических исследованиях и в материаловедении. Методологическое развитие кинетики, расширение круга исследуемых систем неизбежно привело к разнообразию экспериментальных методов и теоретических подходов. Это создает определенные трудности в изучении химической кинетики. В рамках учебника по кинетике сегодня уже невозможно познакомить студента со всем многообразием разделов современной кинетики. Назрела необходимость создания дополнительного пособия по кинетике типа справочника по всем разделам этой многогранной науки. В настоящей книге приведены в лаконичной форме основные понятия и законы химической кинетики, формулы и соотношения, факты и теоретические концепции, методы исследования и подходы к решению отдельных кинетических задач, кинетические схемы механизмов отдельных сложных реакций. [c.3]

    Дайте определение химической кинетики. 2. Перечислите основные факты из истории химической кинетики. 3. Каковы современные представления о механизмах химических реакций 4. Какие виды химических реакций вы знаете 5. Напишите уравнение Вант-Гоффа. 6. Приведите примеры простых и сложных реакций. 7. Дайте определение биокинетики. 8. Что общего и различного между биологической и химической кинетикой 9. Что такое кинетический эксперимент 10. Какие основные цели кинетического эксперимента 11. Дайте определение основных параметров кинетического эксперимента. 12. Какой наиважнейший параметр кинетического эксперимента вы знаете 13. От каких факторов зависит выбор метода исследования 14. Перечислите основные виды и участки кинетических кривых. 15. Для каких целей используются интегральные и дифференциальные кривые 16. Дайте определение скорости реакции. 17. Дайте определение константы скорости и порядка реакции. 18. Реакция образования сульфида кальция описывается уравнением Са + 5 -> Са5. Каков порядок данной реакции 19. Каковы размерности скорости, константы скорости и порядка реакции 20. Чем отличаются понятия скорость реакции , начальная скорость реакции 21. Скорость реакции Л + ВС- В следующим образом зависит от концентраций реагирующих веществ  [c.25]


    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]

    ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ В ХИМИЧЕСКОЙ КИНЕТИКЕ. [c.5]

    В предлагаемом курсе изложены теоретические основы кинетики гомогенных химических реакций. Основное внимание уделено возможно более полному и строгому выявлению физического смысла рассматриваемых явлений и закономерностей, строгому изложению основных понятий, определений и выводов. В курсе, как правило, не фигурируют предварительные выводы из научных исследований, не апробированные мировой наукой. [c.4]

    А-1. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ПОНЯТИЯ ХИМИЧЕСКОЙ КИНЕТИКИ И КРАТКАЯ ИСТОРИЯ ЕЕ ФОРМИРОВАНИЯ [c.9]

    Авторы стремились по возможности соблюсти правильные объемные пропорции различных разделов курса, отвечающие современному значению этих разделов. Основное внимание было сосредоточено на наиболее полном и строгом выяснении физического смысла рассматриваемых явлений и закономерностей, на строгом изложении основных понятий, определений и выводов. В курсе, как правило, не фигурируют не апробированные мировой наукой предварительные выводы из текущих научных исследований. Все основные теоретические положения и расчетные методы химической кинетики, излагаемые в курсе, иллюстрируются конкретными примерами. В основу этих примеров положены экспериментальные данные различных авторов. Однако в целях большей наглядности приводимая в примерах обработка экспериментальных данных, а в связи с этим и получающиеся численные значения, не всегда совпадают с приемами обработки и результатами, получаемыми из этих же данных авторами оригинальных исследований. Это обстоятельство вызвано тем, что в оригинальных работах зачастую используются специальные не общепринятые приемы обработки, вводятся нетипичные эмпирические поправки и т. п. [c.5]

    Книга состоит из девяти глав. В первой главе даются основные понятия химической кинетики (скорость реакции, кинетическое уравнение и т. д.) и важнейшие ее законы — закон действующих масс и уравнение Аррениуса рассматриваются принципы методов экспериментального определения скорости химических процессов. [c.3]

    За последнее десятилетие в моей лаборатории был разработан ряд относительно простых методов для быстрого и достаточно точного определения как термохимических данных, так и кинетических параметров газовых реакций. Сейчас эти методы развились настолько, что их можно с успехом применять для критического анализа сравнительно сложных химических процессов. В предлагаемой читателю книге дано систематическое изложение указанных методов и, кроме того, приведены примеры их применения. Предполагается, что читатель знаком с элементарными понятиями термодинамики химических равновесий идеальных газов, а также с основными идеями химической кинетики. [c.9]

    Книга является пособием по курсу Моделирование химико-технологических процессов . Она состоит из трех частей. Первая часть книги знакомит с основными понятиями и определениями, а также со способами моделирования. Вторая часть посвящена кинетике и макрокинетике процессов, рассмотрению влияния на нее тепловых и диффузионных факторов и гидродинамике потоков в аппаратах. В третьей части изложены принципы построения различных моделей и вопросы оптимизации процессов химической технологии. [c.319]

    Вторая сфера связана с принципом раздельного (независимого) определения параметров функционального оператора ФХС. Структура функционального оператора ФХС обычно состоит из двух частей линейной части, отражающей гидродинамическую структуру потоков в технологическом аппарате, и нелинейной части, отражающей кинетику физико-химических превращений в системе. Методы идентификации, рассмотренные в данной главе, позволяют в основном уточнять параметры первой части оператора ФХС. При этом особенно важную роль играет метод моментов и связь между понятиями весовой функции динамической системы и функцией распределения элементов потока по времени пребывания в аппарате (функцией РВП). Многочисленные примеры применения указанной методики рассматриваются в следующей главе. [c.343]


    Приведены современные понятия и определения, законы, количественные соотношения, выводы фундаментальных уравнений по основным разделам физической химии (термодинамика, газы, растворы, фазовые равновесия, кинетика химических реакций, электрохимия и [c.17]

    О прототропной таутомерии, рассмотрены теории кислот и оснований и различные функции кислотности. Во второй главе ( Свойства атомов и связей ) приведены важнейшие свойства химических элементов и их изотопов, длины связей, вандерваальсовы радиусы атомов, углы между связями, энергии разрыва связей, силовые постоянные, барьеры инверсии и внутреннего вращения, дипольные моменты связей и различных функциональных групп обсуждается понятие ароматичности. Глава Кинетика и термодинамика содержит сведения и определения, касающиеся параметров активации и кинетики типичных реакций замещения, сольволиза и присоединения, мономолекулярного элиминирования и разложения в газовой фазе, моиомолекулярных перегруппировок и изомеризации, а также окислительно-восстановительных реакций в водных растворах. В ней приведены краткие данные о кинетических изотопных эффектах, главным образом водорода. В эту главу включены также основные уравнения принципа линейности свободных энергий и для многих реакций и заместителей приведены соответствующие константы (Гаммета, Тафта, Брауна и т. п.). [c.6]

    На современном уровне изложены теоретические основы электрохимии основные понятия и определения, электрохимия растворов и расплавов, электронные потенциалы, строение межфазных границ, термодинамика и кинетика электрохимических процессов, а также прикладные аспекты электрохимии — химические источники тока и электрохимические реакторы, коррозия и осаждение клеталлов. Второе издание (1-е изд. — 1989 г.) дополнено тремя главами. [c.16]

    Основные сведения о протекании элементарных химических процессов в традиционной химической кинетике извлекаются из измерений, сводящихся к определению скорости изменения концентрации реагентов или продуктов как функции времени, температуры, концентрации самих реагентов или добавляемых в виде примесей веществ и т, п. Получаемая количественная информация представляет одну или несколько констант скорости реакций или их комбинацию в функции температуры. Из этой зависимости на основе более или менее простой теории определяется энергия активации процесса. Достоверность получаемых данных в значительной мере зависит от правильности постулированного механизма реакции, в который входит данный элементарный процесс, и, в частности, от учета всех возможных побочных процессов, которые (Могли бы исказить измерения. Таким образом, здесь видны два недостатка кинетических измерений. Один из них связан с постулированием простой— чаще всего аррениусовской — зависимости константы скорости реакции от температуры k T)=A ехр —E/RT). С накоплением экспериментальных данных принципиально новыми методами исследований и с развитием теории элементарных реакций становилось очевидным, что константа скорости является весьма грубой характеристикой процесса, примени мость которой ограничена условиями теплового равновесия или его малого нарушения в химической системе. Введенное Аре-ниусом понятие энергии активации характеризовало некоторую эффективную величину энергетического барьера, определяемого из температурной зависимости константы скорости реакции. Другая составляющая аррениусовского выражения — пред-экспоненциальный множитель — обычно представляется в виде произведения газокинетического числа столкновений на так называемый стерический множитель. Величина этого. множителя в рамках классических представлений являлась эмпирической поправкой, обеспечивающей согласие экспериментально определенной константы скорости реакции с рассчитанной на основе теории столкновений для твердых сфер. Теория переходного состояния позволила качественно, а также и количественно объяснить возникновение и величину сферического множителя, однако не оставила каких-либо надежд на обобщение этого понятия на неравновесные ситуации. [c.112]


Смотреть страницы где упоминается термин Химическая кинетика Основные понятия и определения: [c.9]    [c.269]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч2 -> Химическая кинетика Основные понятия и определения




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Определения основных понятий

Основные определения

Основные понятия химической кинетики

определение понятия



© 2025 chem21.info Реклама на сайте