Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементарные кристаллические структуры

    Элементарные кристаллические структуры [c.21]

    Твердые тела, построенные из индивидуальных молекул, удерживаемых вместе силами слабого притяжения, называют молекулярными кристаллами. Благородные газы (Не, 1Че, Аг, Кг, Хе, Ни) при очень низких температурах существуют в виде молекулярных кристаллов, которые связаны слабыми межатомными силами. Например, Аг замерзает при — 189°С, образуя плотноупакованную кристаллическую структуру, показанную на рис. 14-1. К числу элементарных веществ, которые кристаллизуются с образованием молекулярных твердых тел, относятся галогены, например Вгг замерзает при - ТС с образованием кристаллической структуры, показанной на рис. 14-2. [c.601]


    При определении кристаллической структуры значения сопоставляются со значениями рассчитанными из предполагаемого расположения атомов в элементарной ячейке. Для того чтобы рассчитать [c.391]

    Элементарная ячейка кристаллической структуры монтмориллонита построена из силикатных слоев, расположенных по обе стороны от слоев, которые содержат алюминий (рис. 4). Силикатные слои состоят из тетраэдров [5104] , вершины которых попеременно направлены к слоям, содержащим алюминий, и к наружной стороне пакета. Тетраэдры, направленные к наружной стороне, содержат гидроксильные группы. В результате силикатный слой отвечает формуле [51408 (ОН2]оо. Внутренний слой, содержащий алюминий, составлен из октаэдров и имеет усредненный состав [А1(0, ОН)б]ао [И]. [c.10]

    Коалесценция частиц дисперсной фазы приводит к изменению дисперсности системы. Устойчивость к процессам коалесценции и коагуляции в реальных нефтяных дисперсных системах различна. Для рассмотрения механизмов образования элементов дисперсной фазы в нефтяных дисперсных системах удобно рассмотреть надмолекулярные структуры в системе, а может быть и частицы дисперсной фазы, состоящие из смолисто-асфальтеновых веществ или высокомолекулярных парафиновых углеводородов, в виде жестких тел с малыми размерами, определенной формы и некоторым запасом поверхностной энергии, способствующей взаимодействию этих тел, с образованием пространственных структур наивыгоднейшей конфигурации, то есть наиболее компактных и с минимально возможным объемом. При пониженных температурах этот процесс приводит в конечном итоге к образованию упорядоченной кристаллической структуры. При повышенных температурах, вследствии дезорганизующего воздействия теплового движения, устанавливается лишь частичное равновесие сосуществующих в системе молекулярных или надмолекулярных группировок конечных размеров, имеющих сходную ориентацию. Подобные группировки в нефтяных дисперсных системах отличаются расплывчатыми границами, образованными переходным сольватным слоем. Определение размеров элементарных группировок в нефтяных дисперсных системах является достаточно сложной задачей, не решенной окончательно до последнего времени. [c.56]

    Кристаллографические индексы (ЛА/) характеризуют ориентацию атомных плоскостей относительно координатных осей кристаллической структуры (ребер элементарной ячейки). При установлении индексов исходят из длин отрезков, отсекаемых атомной плоскостью на трех выбранных осях. Эти отрезки измеряют не в мерах длины, а в долях ребер элементарной ячейки (например, /г ребра, Уз ребра, 2 ребра и т. д.). [c.354]


    Вместе с тем дифракционные методы получили широкое распространение при решении множества прикладных задач в физике твердого тела, металловедении, геологии, биологии и других науках. Сейчас уже невозможно дать описание всех или даже большинства проблем, успешно решаемых дифракционными методами, однако ряд методических приемов структурного анализа является достаточно общим для различных областей науки и техники. Любое экспериментальное исследование должно начинаться с подробного изучения исходного объекта. По его дифракционному спектру. j (О) определяют атомно-кристаллическую структуру или идентифицируют ее с известной структурой эталона, изучают фазовый состав объекта, определяют размеры элементарной ячейки, В случае монокристаллических образцов определяют ориентацию и степень совершенства кристалла, д.ля поликристаллов бывает важным знание размеров зерен и наличия текстуры, [c.146]

    ГПа. Весьма интересно, что у- и а-модификации церия имеют одну и ту же кристаллическую структуру, отличающуюся лишь размером элементарной ячейки предполагается, что данное превращение обусловлено электронной перестройкой в атоме переходом электронов с 4/-ор-битали на 5с1. [c.151]

    Определение параметров элементарной ячейки. Основу кристаллической структуры вещества составляет элементарная ячейка — минимальный объем кристалла, в котором расположение часТиц подчинено той или иной геометрической закономерности. В общем случае ячейка представляет собой параллелепипед с длинами ребер а, Ь, с и углами а, р, у между ними. Размеры а, Ь, с называются параметрами ячейки (решетки). Если за координатные [c.61]

    Когда кристаллические структуры конечных членов, образующих твердый раствор, одинаковы, катионы занимают однотипно координированные позиции и элементарные ячейки имеют близкие размеры, при этом образуется полный непрерывный ряд твердых растворов. [c.98]

    Всякую кристаллическую структуру можно представить состоящей из множества элементарных ячеек —повторяющихся элементов кристаллической решетки в целом. Длина элементарной ячейки с равна периоду идентичности макромолекулы (см. гл. 7). На рис. 12.1 показано расположение участков макромолекул [c.172]

    Карбид кремния, или так называемый карборунд, 81С образуется при восстановлении двуокиси кремния углем при температуре около 2000° С. Чистый карбид кремния представляет собой бесцветные кристаллы (технический окрашен обычно примесями в темный цвет). Кристаллическая решетка карбида кремния напоминает кристаллические решетки алмаза и элементарного кремния структуру кристаллов карборунда можно представить, если в расширенной решетке алмаза половину атомов углерода заменить на атомы кремния. Плотность карбида кремния 3,20 г/см . Характерными свойствами его являются чрезвычайно большая твердость (в этом отношении он лишь немногим уступает алмазу) и химическая инертность. На карбид кремния не действуют даже сильнейшие окислители и кислоты. Он разлагается лишь при нагревании выше 2200° С, а также при сплавлении со щелочами в присутствии кислорода. [c.195]

    Такая правильность структуры определяется как дальний порядок. Наличие дальнего порядка — свойство, присущее только кристаллам. В кристалле можно выделить элементарную (наименьшую) ячейку, повторением которой можно построить всю кристаллическую структуру. Часто встречающаяся триклинная решетка имеет элементарную ячейку с тремя неравными ребрами и углами. Элементарные ячейки для простой кубической, кубической объемно- и гранецентрированной решеток представле ны на рис. IV. 7. [c.173]

    Кристаллохимическое строение — порядок расположения и природа связи атомов в пределах элементарной ячейки, их взаимное влияние друг на друга, а также распределение электронной плотности, величины эффективных зарядов. Как видно из этого определения, понятие кристаллохимического строения представляет собой превращенную форму химического строения молекул применительно к координационным решеткам. Вот почему теория химического строения Бутлерова — общехимическая теория, в одинаковой степени приложимая как к органическим, так и неорганическим объектам. На рис. 6, а приведена кристаллическая структура высокотемпературной модификации стехиометрического оксида титана ТЮ. Она показывает только порядок размещения атомов в элементарной ячейке и не отображает природу межатомных связей, а также их взаимное влияние. Вообще кристаллическая структура в той мере отражает кристаллохимическое строение вещества, в какой структурная формула — химическое строение молекулы. В действительности химическое и кристаллохимическое строение — понятия динамические, а не статические. [c.26]

    Рентгеноструктурный анализ. Он применяется при исследовании структуры кристаллов, жидкостей и аморфных тел. В то же время рентгеноструктурный анализ — основной метод установления структуры кристаллических решеток твердых тел. Неорганическая и органическая кристаллохимия главным образом обязана результатам рентгеноструктурного анализа неорганических и органических веществ. В зависимости от цели и особенностей объекта исследования для получения дифракционной картины используют непрерывное тормозное или дискретное характеристическое излучение в том или ином методе рентгеноструктурного анализа (РСА). Исследование кристаллической структуры различными методами РСА позволяет определить размеры и симметрию элементарной ячейки, а также расположение атомов и молекул в твердом теле. [c.195]


    Чистый карбамид имеет тетрагональную структуру [9]. Его молекулы упакованы плотно, и свободные пространства, в которых могут разместиться молекулы другого вещества, отсутствуют (рис. 76). При образовании комплекса происходит перестройка кристаллической структуры карбамида из тетрагональной в гексагональную. При помощи рентгеноструктурного анализа установлена идентичность рентгенограмм комплексов двух парафиновых углеводородов нормального строения ( н-ундекана и н-гексадека-на), при этом положение линий спектров этих комплексов отличалось от таковых для чистого карбамида (табл. 26). Различие в параметрах элементарной ячейки кристаллов карбамида и комплекса подтверждает способность карбамида изменять в процессе комплексообразования кристаллическую решетку из тетрагональной в гексагональную. [c.196]

    Некоторые кристаллические структуры. Любую кристаллическую решетку можно рассматривать как совокупность элемен-т грных ячеек. Элементарной ячейкой называют ту наименьшук> часть кристалла, которая сохраняет ос(ябенности структуры, характерные для данной решетки. На рнс. 1.80 и.зображена кристаллическая решетка металлического натрия, в которой штриховкой показана одна из элементарных ячеек. Элементарная ячейка [c.145]

    Морфология образующихся частиц зависит от целого ряда факторов, но наиболее важным является соотношение скоростей их зарожд ения и роста, которые в свою очередь в значительной степени зависят от пересыщения системы. Окончательный размер частиц определяется числом центров кристаллизации и скоростью осаждения вещества. Умеренно растворимые вещества, например карбонаты, обычно осаждаются в виде очень мелких частиц. При медленном, регулируемом росте умеренно растворимых солей можно получать монодисиерсные осадки. При высоких степенях пересыщения первичный критический центр кристаллизации может быть меньше размера элементарной ячейки решетки и начинает расти, не имея упорядоченной кристаллической структуры. Таким путем можно получать аморфные или частично кристаллизованные осадки [И]. При низких степенях пересыщения образуется хорошо сформированный кристаллический осадок, причем форма частиц зависит от структуры кристалла и от процессов, преобладающих на поверхности раздела фаз в ходе роста. На морфологию осадка сильно влияет скорость роста кристаллов. При низких скоростях образуются компактные кристаллы, форма которых соответствует кристаллической структуре. Ионы в растворе вблизи поверхности раздела кристалл — жидкость играют важную роль в модификации формы кристалла. При высоких степенях пересыщения нередко образуются объемистые осадки с дендритными частицами. При еще больших уровнях пересыщения получаются очень мелкие частицы, способные к агломерации или образованию золей. [c.19]

    Определенное расположение частиц в пространстве, обусловливающее структуру данного кристалла, называется пространственной кристаллической решеткой. Частицы в разных пространственных решетках расположены различно, но закономерность их рас-полол<ения сохраняется во всех кристаллах. Наименьшая часть кристаллической реитетки, отображающая форму всей кристаллической структуры данного тела, называется элементарной ячейкой. [c.69]

    Примером ионной кристаллической решетки являются кристаллы поваренной соли, возникающие при конденсации молекул НаС1, в свою очередь образованных в результате взаимодействия ионов Ыа+ и С1 . Если в качестве элементарного фрагмента кристаллической решетки выбрать какую-либо простейшую геометрическую фигуру, то кристаллическую структуру КаС1 можно изобразить в виде куба, вершины которого (узлы кристаллической решетки) заняты ионами Ыа" " и С1 . При этом перемещение по кристаллической решетке в одном из трех направлений, совпадающем с ребрами куба, фиксирует регулярное расположение ионов Ка+ и С1 , т. е. чередование положительных и отрицательных зарядов. Сильное взаимное притяжение разноименных ионов обеспечивает высокую прочность ионных кристаллов и объясняет их сравнительно высокие температуры плавления и кипения (табл. 12). [c.41]

    При введении в углеводородную матрицу депрессорной пpи aдки( J.H ,,)2N N в различных концентрациях на термограмме не проявляется дополнительных пиков по отнотпению к термограмме чистой смеси, что свидетельствует о сокристаллизации молекул нормальных парафинов и депрессорной присадки на стадии образования и ро-сга надмолекулярных структур с сохранением кристаллической решетки совершенного типа, без дефектов и искажений. Отсутствие размывания пиков на термограмме свидетельствует о структурных переходах в системе без образования переходной сорбционно-сольватной фазы. Можно предположить в случаях повышенных концентраций присадки наличие инверсии кристаллической структуры за счет взаимного перехода и переориентации структур, создаваемых молекулами нормальных парафиновых углеводородов и поверхностно-активного вещества. При этом межмолекулярные взаимодействия в элементарной ячейке системы практически не изменяются. [c.162]

    Для выяснения влияния дефектов на характер рентгеновского рассеяния (т. е. на вид рентгенограмм полимеров) Хоземанном была предложена модель идеального паракристалла. Паракри-сталл получается из монокристалла путем изменения углов между единичными трансляциями в различных элементарных ячейках без изменения длин этих трансляций (рис. VI. 3). Анализ показал, что дефектность кристаллической структуры в полимерах приводит к уширению дифракционных рефлексов и изменению их [c.170]

    Сульфиды металлов имеют кристаллическую структуру, тугоплавки, многие характерно окрашены. Их получают при непосредственном взаимодействии элементарных веществ с серой или сероводородом, а также осаждением из растворов сероводородом (Азг з, ЗЬгБз, 51 2, 5п5, РЬЗ, Си5, Сс15, HgS и др.) или сульфидом аммония (2п5, Со5, N 5, Ре5, Мп5 и др.). [c.241]

    Минералы силлиманитовой группы и муллит. Минералы группы силлиманита имеют общую формулу АЬОз- Si02 и включают кианит (дистен), андалузит и силлиманит. Для структуры этих минералов характерно наличие цепочек (параллельных оси с) из октаэдров [AI06] , однако расположение цепочек в элементарных ячейках может быть различным. Соседние октаэдры соединены через общее ребро, соединяющее два иона 0 -. Цепочки с четырех сторон соединены островными тетраэдрами [8104]чередующимися с полиэдрами [АЮт], равными у всех минералов. Алюминий в кристаллической структуре силлиманита имеет координационное число 4 и 6, в андалузите— 5 и 6, в дистене —только 6, следовательно, структура дистена наиболее плотная. [c.142]

    Подведем общин итог. Полимеры с регулярными макромолекулами способны кристаллизоваться, причем в кинетике кристаллизации и в вида.< кристаллических структур проявляется весь комплекс релаксационных свойств полимера. Характерной чертой кристаллических структур является участие в них макромолекул, сложенных сами на себя так, что сегменты оказываются ориентированными перпендикулярно плоскости ламелей — элементарных кристаллических образований. Кривая напряжение — деформация, за- [c.193]

    В кристаллах две данные частицы, например ион натрия и ион хлора в кристалле хлорида натрия, отделены друг от друга определенным минимальным расстоянием, причем вокруг иона натрия расположены шесть ионов хлора и, соответственно, наоборот. Эта конфигурация сохраняется во всех областях кристалла, и ее периодическое повторение и образует кристаллическую структуру. Более точное определение связано с понятием об элементарной ячейке. Элементарная ячейка есть параллелепипед наименьшего объе- [c.272]

    За счет двух атомов водорода и двух несвязывающих электронных пар атома кислорода каждая молекула воды способна к образованию четырех Н-связей и имеет в конденсированной фазе к.ч.= =4, что приводит к окружению,ее соседними молекулами, близкому к тетраэдрическому. Считается, что в твердой фазе все молекулы воды объединены Н-связями и образуют ажурную кристаллическую структуру с относительно крупными пустотами (рис. 55,6). Элементарная ячейка льда содержит 46 молекул НгО, между которыми [c.214]

    Вещество достаточно полно определяется тремя признаками 1) занимает часть пространства, 2) обладает массой покоя, 3) построено из элементарных частиц за счет сил притяжения и отталкивания. Взаимное притяжение и отталкивание элементарных частиц, составляющих данное физическое тело, определяет состояние веществ. Так, например, поваренная соль ЫаСГ существует как вещество с определенной кристаллической структурой, поскольку между ионами Ыа и СР действуют силы электростатического [c.8]

    В отличие от Na l металлический натрий образует объемно центрированную кубическую решетку. На рис. 2 приведена кристаллическая структура натрия с выделением (штриховка) одной элементарной ячейки. Как это видно из рис. 2, в структуре натрия также отсутствуют молекулы. В парах же натрия обнаружены молекулы Na2 с межатомным расстоянием 0,308 нм против 0,372 нм в твердом металлическом натрии. [c.13]


Смотреть страницы где упоминается термин Элементарные кристаллические структуры: [c.156]    [c.156]    [c.403]    [c.334]    [c.118]    [c.49]    [c.304]    [c.2]    [c.226]    [c.58]    [c.172]    [c.183]    [c.525]    [c.525]    [c.137]    [c.268]    [c.14]    [c.20]   
Смотреть главы в:

Химия твердого тела -> Элементарные кристаллические структуры




ПОИСК





Смотрите так же термины и статьи:

Кристаллическая структура



© 2025 chem21.info Реклама на сайте