Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры древесины

    Основные продукты пиролиза древесины - газы, жидкий пиролизат (жижка) и уголь, как показывает изучение термической деструкции отдельных полимеров древесины (целлюлозы, гемицеллюлоз, лигнина), образуются из всех компонентов древесины, но в разных количественных соотношениях. Неконденсируемые газы состоят из СО, СО2, Н2, низших насыщенных и ненасыщенных углеводородов. [c.361]


    Вещества, которые мы сейчас называем полимерами, известны давно. Волокна растительного и животного происхождения (хлопок, пенька, шелк, шерсть), из которых производятся ткани, древесина, используемая с незапамятных времен как топливо и строительный материал, кожа, белковые пищевые вещества и многие другие продукты, играющие важную роль в жизни человека, состоят из природных полимерных материалов. [c.5]

    Спутником клетчатки в древесине является лигнин. Это высокомолекулярное соединение, молекулярная масса около 11 ООО. Строение лигнина еще до конца не исследовано, однако выяснено, что он представляет собой полимер, в котором мономерными звеньями являются вещества фенольного характера, имеющие, например, следующую структуру  [c.314]

    С ростом концентрации полимеров в растворах поглощение полимера древесиной повьппается  [c.117]

    При температуре 270...280°С начинается стадия собственно пиролиза, заканчивающаяся примерно при 400°С. На этой стадии происходят экзотермические реакции термической деструкции полимеров древесины с выделением большого количества теплоты и образованием основной массы газообразных и жидких продуктов разложения, сначала СО2, СО, других неконденсируемых газов, уксусной кислоты, метанола, а затем смол. В остатке от пиролиза получается древесный уголь. [c.354]

    При облучении материалов ионизирующим излучением может происходить и улучшение их свойств. Так, например, при облучении полиэтилена происходит сшивание молекул полиэтилена. Свойства сшитого полиэтилена значительно отличаются от свойств полимера, не подвергавшегося действию радиации. На этой основе создана технология производства кабельных изделий повышенной термической, химической и радиационной стойкости с хорошими электроизоляционными свойствами. Радиационной модификации можно подвергнуть и другие материалы, в частности древесину. Радиационная модификация древесины состоит в том, что ее пропитывают мономерами и затем облучают. Таким путем получают замечательные древесные пластики, не имеющие природных аналогов. Эти пластики не гниют и не набухают, легко окрашиваются и обрабатываются они красивы и достаточно дешевы. [c.213]

    Неметаллические материалы используют как в многослойных конструкциях, так и самостоятельно. Неметаллические материалы весьма разнообразны. К ним относятся неармированные и армированные полимеры, древесина, бетон, кирпич, керамика, стекло, ситаллы и т.п. [c.473]

    Феноло-формальдегидные и резорцино-формальдегидные- резолы применяют в качестве клеев для склеивания древесины. При добавлении полиацеталя или поливинилацетата в спиртовой раствор резола полимер приобретает высокую адгезию к металлу, а клеевая пленка—некоторую эластичность. [c.384]


    В дальнейших исследованиях было установлено, что прочность полимеров, древесины, силикатных стекол, металлов и других материалов существенно зависит от продолжительности действия нагрузки [3, с. 32 10 11 12, с. 47]. [c.73]

    Представляет интерес процесс облагораживания древесины (береза, сосна) — пропитка ее метилметакрилатом и затем облучение быстрыми электронами или 7-лучами. В результате образования структурированного полимера древесина приобретает высокую прочность (в 2—3 раза выше исходной), большую твердость и водонепроницае-.мость, хорошо поддается обработке и может с успехом использоваться для изготовления челноков в ткацких станках, подшипников и в мебельной промышленности. [c.139]

    Большое число работ по измельчению полимеров было также выполнено в ГДР Грюном с сотр. [317, 319, 320, 323]. Они т зу-чали виброизмельчение природных полимеров (древесины, целлюлозы, лигнина, крахмала) [36, 178, 307, 308, 315, 316, 325] i роль [c.287]

    Кроме реакций присоединения, существуют и другие способы синтеза полимеров. Белки, крахмал, целлюлоза (составная часть древесины и бумаги), найлон и полиэфиры — все эти полимеры образовались путем потери мономерами молекул воды. Отщепление воды называется конденсацией, а получающиеся при этом полимеры — конденсационными полимерами. [c.222]

    Целлюлоза [СвН702(0Н)з] является самым распространенным природным полимером. Ее получают из хлопка (хлопковая целлюлоза или линт) или из древесины (древесная целлюлоза). Молекулярный вес целлюлозы колеблется от 50 ООО до 200 ООО. Содержащиеся в каждом элементарном звене гидроксильные группы придают целлюлозе свойства спирта и могут вступать в реакции этерификации и алкилирования. Целлюлоза не растворяется ни в воде, ни в органических растворителях, она с трудом растворяется в медноаммиачном растворе и водном растворе хлористого цинка. Ее,температура [c.97]

    Простые сахара в виде сахарозы (димеров глюкозы и фруктозы) непосредственно ферментируются в этанол. Они, однако, содержатся в достаточной концентрации лишь в небольшом числе растений, прежде всего в сахарном тростнике и сахарной свекле. В некоторых сельскохозяйственных культурах (картофеле, кукурузе и других зерновых) довольно много крахмала, представляющего собой олигомер глюкозы. В древесине и растительных сельскохозяйственных отходах сахара содержатся в виде целлюлозы и гемицеллюлозы. Олигомеры и полимеры сахаров перед ферментацией превращают в моносахариды путем гидролиза  [c.122]

    Основное количество уксусного ангидрида расходуется для синтеза ацетилцеллюлозы. Целлюлоза — это полимер глюкозы, содержащий 2000—3000 мономерных звеньев. В хлопке и льне молекулы целлюлозы вытянуты в длинные нити, благодаря чему хлопок и лен являются удобным сырьем для производства тканей. Целлюлоза, полученная из древесины, [c.719]

    Высшие хлорированные парафины ( js— ia и С22—С25) нашли практическое применение в ряде отраслей промышленности, в том числе и в производстве полимерных материалов, применяемых в строительстве. Они часто используются в качестве пластификаторов при производстве поливинилхлоридных мягких изделий различного назначения (материалы для полов, трубы и шланги, пленки и искусственная кожа и др.). С этой целью применяют жидкие хлор-парафины с углеродной цепью, содержащей 15—18 и 23—25 углеродных атомов (содержание хлора соответственно 46—53 и 40— 42%). Стоимость поливинилхлоридных изделий при этом снижается без снижения качества. Жидкие хлорпарафины, не ухудшая физических свойств, придают полимерам огнестойкие свойства и повышают их стойкость к действию бензина и других растворителей. Они используются для пропитки тканей, бумаги, брезента, древесины и многих других материалов. Такая обработка придает им не только огнестойкость, но и гидрофобные и погодоустойчивые свойства. Хлорпарафины широко используются и для изготовления химически стойких водо- и огнезащитных красок на основе некоторых полимеров. Все это имеет важное значение для строительной индустрии. [c.99]

    АКТИВИРОВАННЫЙ УГОЛЬ-уголь с чрезвычайно развитой микро- и макропористостью (размеры микропрр составляют от 10 — 20 до 1000 А). Существует два типа А. у. Первый тип применяют для сорбции газов и паров имеет большое количество микропор, обусловливающих сильную адсорбционную способность. Второй тип используют для сорбции растворенных веществ. Оба типа А. у. должны иметь большую легко доступную внутреннюю поверхность пор. А. у. изготовляют в две стадии. 1) Выжигают древесину, скорлупу орехов, косточки плодов, кости животных при температуре 170—400° С без доступа воздуха, чем достигают удаления воды из исходного органического вещества, метилового спирта, уксусной кислоты, смолообразных веществ и других, а также развития пористой поверхности. 2) Полученный уголь-сырец активируют, удаляя из пор продукты сухой перегонки и развивая поверхность угля. Это достигается действием газов-окислителей, перегретым водяным паром или диоксидом углерода при температуре 800—900° С или предварительным пропитыванием угля-сырца активирующими примесями (хлоридом цинка, сульфидом калия), дальнейшим прокаливанием и промыванием водой. До-стагочно тонкопористый А. у. можно получить термическим разложением некоторых полимеров, например, поли-винилиденхлорида (сарановые угли). А. у. применяют для разделения газовой смеси, в противогазах, как носитель катализаторов, в газовой хроматографии, для очистки растворов, сахарных соков, воды, в медицине для поглощения газов и различных вредных веществ при кишечно-желудочных заболеваниях. [c.13]


    Этилцеллозольв — ценный растворитель для нитро- и ацетилцеллюлозы, природных и синтетических полимеров, лаков и эмалей. Применяется для пропитки древесины и удаления лаковых покрытий. [c.167]

    Подшипники из слоистых пластиков оказались обладателями еще одного очень важного свойства — они достаточно устойчиво работают в агрессивных средах. Так, на целлюлозно-бумажных комбинатах они вытеснили кислотоупорную бронзу из всех цасосов, перекачивающих кислые продукты. И что замечательно, если подшипники из бронзы раньше работали всего лишь 3—4 месяца, то деревянные работают годами. Вот видите, как облагороженная полимерами древесина смогла конкурировать и даже вытеснить бронзу, баббит из их традиционных областей применения. [c.65]

    Эти полимеры применяют для получения лаков, клеев, пористых материалов и слоистых пластиков с использованием ткани, бумаги и стеклоткани. Из них можно изготавливать облицовочные и древесностружечные плиты, искусственный мрамор (в качестве связующего для цемента и мраморной крошки), термостойкие пено-пласты (мипора), применяющиеся в качестве термоизоляционных материалов. Из модифицированных карбамидных полимеров можно приготовить изоляционные лаки для покрытия металлов, стекол, паркетных полов и дешевые клеи, которые служат в основном для склеивания древесины (фанеры) и пористых материалов. [c.426]

    Всякий полимер, увеличиваясь в объеме при набухании, оказывает вполне определенное давление на стенки сосуда, ограничивающие полимер. Это давление набухания. В ряде случаев давление набухания достигает иногда десятков и даже сотен МПа. Давление набухания люди издавна использовали, в частности древние египтяне, при постройке знаменитых пирамид, пользовались давлением набухания древесины для откалывания, каменных глыб. Для этой цели клинья из сухого дерева забивали в трещины скал и в специально проделанные отверстия, а затем поливали водой древесина, набухая, разрывала скалу. Аналогично этому осуществляют свою разрушительную работу нежные корешки растений, дробя горные породы. [c.332]

    Целлюлоза линейный полимер -D-глюкозы - содержится в большинстве растений. р-Глюкозидные связи целлюлозы не гидролизуются в организмах многих животных, включая человека. Одаако многие микроорганизмы разрушают целлюлозу. Такие микробы встречаются в почве и кишечном тракте животных, переваривающих листья и древесину. Эти микроорганизмы играют важную роль в поддержании в равновесии окружающей нас среды. Почвенные бактерии, муравьи-древоточцы, тфмиты и подобные им организмы, поедая опавшие листья, [c.264]

    Сырьем для синтетических полимеров также являются природные продукты — природный газ, нефть, каменный уголь, древесина [c.471]

    В основе ряда технологических операций лежат процессы пропиты-Бания жидкостями естественных и искусственных пористых материалов. В тех случаях, когда пропитываемый материал является природным полимером (древесина, хлопок, кожа) теоретически предсказать результаты процесса пропитывания на различных участках образца весьма трудно, так как сложность анатомического строения исключает возможность установления каких-либо четких закономерностей. Для исследования процессов цроиитывания в подобных системах был использован метод скоростной и обычной киносъемки с последующей расшифровкой кинокадров. Этот метод наглядно демонстрирует продвижение фронта пропитывающей жидкости на различных участках образца и позволяет, таким образом, исследовать также кинетику процесса. Результаты экспериментов могут быть представлены графически в координатах участок — (/), время — (1), высота поднятия — (/г). Скорость пропитыва ния и ее конечный эффект в большой степени зависят от химической природы внутренней поверхности пористого тела, определяющей ее филь-ность. [c.359]

    ФЕНОЛЫ — органические соединения ароматического ряда, содержащие гидроксильные группы, непосредственно связанные с ароматическим ядром. По числу гидроксилов различают одноатомные, двухатомные и многоатомные Ф. Простейшим из них является первый член ряда — оксибензол С,НвОН, называемый просто фенолом (карболовая кислота) оксипроизводные толуола (метил-фенолы) называют орто-, мета- и пара-крезоламЛ, а оксипроизводные ксилолов — ксиленолами. Ф. нафталинового ряда называются нафтолами. Простейшие двухатомные Ф. о-диоксибензол называют пирокатехином, л-диоксибен-аол — резорцином, п-диоксибензол — гидрохиноном. Большинство Ф.— бесцветные кристаллические вещества, иногда жидкости. Некоторые имеют характерный запах. В воде растворимы лишь простейшие Ф., в органических растворителях — почти все. Ф.— слабые кислоты, со щелочами образуют солеобразные вещества — феноляты. Источником получения многих Ф. является каменноугольная смола и деготь бурого угля и древесины. Ф. получают и синтетически. Применяют как антисептики, антиокислители, для производства фенолформальдегидных смол, полиамидов и других полимеров на основе Ф. синтезируют красители, лекарственные и парфюмерные препараты, пластификаторы, пестициды, поверхностно-активные вещества и др. Ф. — токсичные вещества. [c.261]

    Локализованная в щелях коррозия может привести к преждевременному износу работающих в атмосферных условиях конструкций, особенно болтовых и заклепочных (например, стальных мостов). Щелевой коррозии также подвержены конструкции, находящиеся в водной и почвенной средах (металлические резервуары, трубопроводы, греющие элементы водоподогревате-лей и т. д.). Щелевая коррозия может возникнуть в зоне контакта металла с неметаллами (древесиной, полимерами, резиной, асбестом, стеклом, бетоном, тканями и т. д.). Часто наблюдается коррозия фланцевых соединений в зоне контакта металла с прокладками, выполненными из резины, фетра нли другого материала. [c.444]

    Меламин применяется для производства меламино-альдегидных полимеров, лаков и клеев, обладающих высокой механической прочностью, малой электр0пр0Г50ДН0стью, воде- и термостойкостью. Метилолмеламины используются для склеивания древесины и получения высококачественных лаковых покрытий (см. с. 427). При химической модификации продуктов конденсации меламина и формальдегида образуются очень эффективные разжижители цементных бетонов, действующих одновременно и как ускорители твердения. Эти соединения называются суперпластификаторами . [c.261]

    Благодаря высокой адгезии ко многим материалам (стеклу, металлам, древесине и т. д.) винилацетат в виде дисперсии часто вводится в состав лаков и клеев он применяется для покрытия дерева, ткани, бумаги (моющиеся обои), черепицы и керамики для придания им гидрофобных свойств. Поливинилацетатная дисперсия (ПВАД) употребляется в качестве полимерцементных и полимер-бетонных покрытий, а также для получения бесшовных полов, не боящихся влаги. ПВАД входит в состав водоэмульсионных красок, используемых для внутренней и наружной покраски жилищ, больниц, школ и других зданий культурно-бытового назначения. Эти краски высыхают за 2—3 часа и дешевле масляных. Они обладают высокой адгезией к различным поверхностям, их можно наносить непосредственно на влажные стены или потолок. Кроме того, при высыхании этих красок выделяются только пары воды, а штукатурка, содержащая ПВАД, очень прочная и непачкающаяся. Вытесняя цементный раствор и густотертую масляную краску, ПВАД может использоваться в качестве связующего для крепления к стенам керамической плитки, а также входить в состав нового пропиточного препарата для предохранения древесины от гниения. [c.417]

    Смесь меламиноформальдегидных и фенолоформальдегидных полимеров в сочетании с древесным щпоном, целлюлозой, тканью или бумагой употребляют для производства пресс-материалов, декоративных бумажно-слоистых пластиков и облицовочных плит. Модифицированные меламиноформальдегидные полимеры используются в качестве лаков холодной и горячей сущки, обладающие высокой водо- и атмосферостойкостью. Эти же полимеры, модифицированные касторовым маслом, сохраняют хорощую механическую прочность даже при высокой температуре. Прекрасная совместимость меламиноформальдегидных полимеров с нитроцеллюлозой позволяет применять их для получения нитролаков, которые идут на покрытие мебели и различных изделий из древесины. [c.427]

    Мочевиноформальдегидфурфурольные полимеры (МФФ) характеризуются водостойкостью, механической прочностью и эластичностью. Используются при склеивании древесины и в качестве связующего при изготовлении древесностружечных плит. С этими же целями применяется смесь МФФ и сульфитно-спиртовой барды. [c.428]

    На основе полимеров можно приготовить различные клеи и мастики, применяемые в строительстве для склеивания литых, слоистых и волокнистых материалов, элементов различных изделий и конструкций из древесины, металла и бетона. Широко применяются перхлорвиниловые клеи и поливинилацетатная дисперсия (для приклеивания декоративно-обшивочных материалов), фенолоальдегидные клеи (для производства древесностружечных плит), фенолокаучуковые клеи (для соединения стекловолокнистых материалов с металлом), полиуретановые и эпоксидные клеи (для склеивания различных неорганических материалов друг с другом и металлами), мочевино- и фенолоформальдегидные клеи (для склеивания фанерных плит и строительных конструкций из древесины, металлов, пластмасс, стекла, керамики и т. д.). Из клеящих мастик следует отметить битумные, битумно-резиновые, кумарино-каучуко-вые, коллоксилиновые, казеино-цементные и др. [c.434]

    Применение используется для многочисленных синтезов, получения красителей, ПАВ, присадок для топлив, дубителей. Является антиокисли-телем, антисептиком (в том числе и для древесины), используется для получения фенолальдегидных полимеров качественного и количественного определения свободного оксида кальция в цементе. [c.99]

    Сульфитно-спиртовая барда представляет собой в основном кальциевые соли лигносульфоновых кислот — лигносульфонаты кальция. Лигнин — это природный полимер, содержащийся в древесине. Лиг-носульфоновые кислоты образуются при сульфировании лигнина. Если лигниногруппу обозначить через К, то формула лигносульфоната кальция изображается так [(К50з)2Са] . [c.168]

    ЛИГНИН (лат. lignum — дерево) — сложное органическое соединение — полимер ароматического происхождения нерастворим в воде, является костяком строения клеток одревесневших растительных тканей. В древесине содержится около 30% Л. Л. и продукты его переработки широко используются во многих отраслях промышленности. [c.146]

    При выборе клея необходимо учитывать также условия эксплуатации готовых изделий. Так, для склеивания древесных материалов, например в производстве фанеры или древесноволокнистых плит, с успехом применяют, в частности, фенолальдегидные и мочевиноальдегидные смолы при относительно высоком содержании альдегидов. Это способствует лучшей адгезии полимера вследствие образования связей с гидроксильными группами целлюлозы именно поэтому древесина, подвергавшаяся ранее нагреву (что может сопровождаться образованием в ней эфирных связей за счет уменьшения гидроксильных групп), обычно плохо склеивается этими клеями. [c.230]

    В первом случае трещина ири разрушении проходит поперек ориентированных макромолекул, а во втором случае — вдоль направления ориентации. Отсюда легко понять особенности свойств ориентированного полимера, с )авнив eг(J с природным ориентиро-вапным полимерным материалом --древесиной. Трещина в древесине легко проходит вдоль во. юкон и лишь при больших усилиях распространяется поперек во./юкон. [c.191]

    Полимерные соединения — это вещества с очень щироким диапазоном молекулярных весов. Молекулы некоторых полимеров достигают весьма больших размеров они по сравнению с неполимерными соединениями представляются как молекулы-гиганты. Например, молекула целлюлозы (основное вещество хлопка, древесины и других растительных материалов) содержит более 15 000—20 000 структурных звеньев и более 200 000 атомов, тогда как неполимерные соединения — только 2—50 атомов. [c.7]

    Приведенное описание относится к дисперсным структурам глобулярного типа, в которых непрерывный каркас —носитель прочности образуется в результате сцепления отдельных частиц дисперсной фазы при превращении свободнодисперсной системы в связную. Существуют и другие типы структур, например ячеистые (в отвержденных пенах и эмульсиях), где каркас представлен непрерывными пленками твердообразной дисперсионной среды. Такие структуры, характерные для некоторых высокомолекулярных систем, могут возникать при конденсационном выделении новой фазы в смесях полимеров. Отдельного подхода к описанию механических свойств требуют и структуры с резко выраженной анизометрией частип (волокнистого типа). Вместе с тем наряду с пористыми структурами существуют и разнообразные компактные микрогетерогеншые структуры, в том числе современные композиционные материалы, а также строительный материал живой природы (древесина, кости животных и т. д.). [c.376]


Смотреть страницы где упоминается термин Полимеры древесины: [c.201]    [c.236]    [c.279]    [c.20]    [c.209]    [c.495]    [c.264]    [c.459]    [c.254]    [c.17]    [c.583]    [c.128]    [c.283]   
Химия в реставрации (1990) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Древесина



© 2025 chem21.info Реклама на сайте